Những câu hỏi liên quan
PB
Xem chi tiết
CT
2 tháng 7 2019 lúc 11:18

Đáp án A

Ta có

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 2 2018 lúc 4:20

Đáp án A

Bình luận (0)
NT
Xem chi tiết
NL
24 tháng 12 2020 lúc 12:48

\(\Leftrightarrow\left(2m-1\right)sinx-\left(m+2\right)cosx+4m-3\ge0\) ;\(\forall x\)

\(\Leftrightarrow m\ge\dfrac{sinx+2cosx+3}{2sinx-cosx+4}=P\)

\(\Leftrightarrow m\ge P_{max}\)

Ta có: \(P=\dfrac{sinx+2cosx+3}{2sinx-cosx+4}\Leftrightarrow\left(2P-1\right)sinx-\left(P+2\right)cosx=3-4P\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(3-4P\right)^2\)

\(\Leftrightarrow11P^2-24P+4\le0\)

\(\Rightarrow\dfrac{2}{11}\le P\le2\)

\(\Rightarrow m\ge2\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 8 2017 lúc 3:25

+ Tính đạo hàm  y ' = cos x + sin x + 2017 2 m .

y ' ≥ 0 ⇔ m ≥ - sin   x - cos   x 2017 2 = f ( x )

+ Theo bất đẳng thức Bunhiacopxki thì

( - sin x - cos x ) 2 ≤ ( - 1 ) 2 + ( - 1 ) 2 sin 2 x + cos 2 x = 2 - 2 ≤ ( - sin x - cos x ) ≤ 2

 Do đó : 

- 2 2017 2 ≤ f ( x ) ≤ 2 2017 2

F(x) đạt giá trị lớn nhất là  2 2017 2 = 1 2017 ⇒ m ≥ f ( m a x ) = 1 2017

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 10 2017 lúc 9:34

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 2 2018 lúc 9:16

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 1 2018 lúc 10:09

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 3 2018 lúc 16:46

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 6 2018 lúc 13:32

Đáp án C

Đặt t = tan x 2 ta có: y = sin x + 2 cos x + 1 s i n x + cos x + 2

= 2 t 1 + t 2 + 2 1 − t 2 1 + t 2 + 1 2 t 1 + t 2 + 1 − t 2 1 + t 2 + 2 = − t 2 + 2 t + 3 t 2 + 2 t + 3  

Tập các giá trị của y là tập các giá tri làm cho PT y = − t 2 + 2 t + 3 t 2 + 2 t + 3 ⇔ y + 1 t + 2 y − 1 t + 3 y − 1 = 0  có nghiệm với ẩn t

⇒ Δ ' = y − 1 2 − 3 y + 1 y − 1 = − 2 y 2 − 2 y + 4 ≥ 0 ⇒ − 2 ≤ y ≤ 1 ⇒ m = − 2 , M = 1

Bình luận (0)