Những câu hỏi liên quan
PB
Xem chi tiết
CT
15 tháng 10 2019 lúc 18:22

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2018 lúc 6:15

Chọn A.

Lấy logarit cơ số 2 hai vế của phương trình, ta được 

Hay x2 + (2x + m) log25 - log23 = 0

Nên x2 + 2log25.x + mlog25 - log23 = 0

Để phương trình đã cho có hai nghiệm 

Bình luận (0)
NP
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 6 2019 lúc 6:46

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2017 lúc 2:13

Chọn D.

Bình luận (0)
LT
Xem chi tiết
NH
Xem chi tiết
MY
24 tháng 11 2021 lúc 22:37

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

Bình luận (2)
TT
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 9 2019 lúc 12:49
Bình luận (0)
HB
Xem chi tiết
NL
8 tháng 4 2022 lúc 14:42

Đặt \(-x^2+2x=t\Rightarrow0\le t\le1\)

\(\Rightarrow-t^2+t-3+m=0\)

\(\Leftrightarrow t^2-t+3=m\)

Xét hàm \(f\left(t\right)=t^2-t+3\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{11}{4}\)

\(\Rightarrow\dfrac{11}{4}\le f\left(t\right)\le3\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\dfrac{11}{4}\le m\le3\)

Bình luận (0)