Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
AH
26 tháng 8 2021 lúc 12:08

\(\underbrace{999....9}_{10} 4\underbrace{000..0}_{10}9=\underbrace{999....9}_{10} 4\underbrace{00...0}_{11}+9\)

\(=\underbrace{999....9}_{10}4\times 1\underbrace{00...0}_{11}+9\)

\(=(\underbrace{999....9}_{10}7-3)\times (\underbrace{99....9}_{10}7+3)-9\) 

(em tưởng tượng 1000 có 3 chữ số 0 đằng sau, biểu diễn được thành 997+3 có 3-1=2 chữ số 9)

 

Bình luận (8)
AH
26 tháng 8 2021 lúc 12:08

Tất cả những vấn đề em hỏi đều thuộc lý thuyết phân tích cấu tạo số cơ bản. Tất nhiên, lời giải sẽ có 1 chút tắt (không đáng kể). 

Tip: Em chịu khó viết ra nháp từng bước một và đọc kỹ. Nếu thấy số dài mà không hiểu vì sao người ta làm vậy, em thử với bộ số nhỏ hơn có phong cách tương tự (ví dụ 994009)

Bình luận (0)
H24
Xem chi tiết
TD
21 tháng 9 2017 lúc 16:04

Tính can N là gì thế?

Bình luận (0)
TH
21 tháng 9 2017 lúc 16:10

Can N là gì có hỏi can đâu

Bình luận (0)
H24
21 tháng 9 2017 lúc 16:23
là căn N đó
Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

Bình luận (0)
JE
Xem chi tiết
AH
4 tháng 2 2021 lúc 0:54

Lời giải:\(\lim\limits\sqrt{\frac{n(u_n+9)}{n+5}}=\lim\limits\sqrt{\frac{u_n+9}{1+\frac{5}{n}}}=\lim\limits\sqrt{u_n+9}=\sqrt{L+9}\)

Bình luận (0)
LK
Xem chi tiết
HM
13 tháng 8 2019 lúc 20:33

Hỏi đáp Toán

B = 99..9 (n số 9 )

= 99...900...0 ( n+1 số 9 và n+1 số 0).

Đặt x =11...1 (n+1 số 1) .

Thì B =9x.10^(n+1) -9x =9x.[10^(n+1) -1] =9x.99...9 (n+1 số 9 )

nên B = 9x.9x = (9x)^2 =(99...9)^2 (n+1 số 9 ).

Bình luận (0)
H24
2 tháng 8 2020 lúc 14:21

0pi0i9

Bình luận (0)
MH
Xem chi tiết
LC
Xem chi tiết
 .
7 tháng 7 2019 lúc 17:34

a) A = \(\left(10^{n+1}-5\right)^2\)

Bình luận (0)
GL
7 tháng 7 2019 lúc 17:38

Ta có :

x=99....90....025=99....90....025

         | n số 9 ||n số 0|

Dễ thấy 10^n-1=999...910n−1=999...9( n chữ số 9 )

Ví dụ 10-1=910−1=9

10000-1=999910000−1=9999

......

\Rightarrow\left(10^n-1\right).10^{n+2}+25⇒(10n−1).10n+2+25

=10^n.10^{n+2}-10^{n+2}+25=10n.10n+2−10n+2+25

=10^{2n+2}-10.10^{n+1}+25=102n+2−10.10n+1+25

=\left(10^{n+1}\right)^2-2.5.10^{n+1}+5^2=(10n+1)2−2.5.10n+1+52

=\left(10^{n+1}-5\right)^2=(10n+1−5)2 là số chính phương.

Vậy ...

Bình luận (0)
DL
Xem chi tiết
NM
29 tháng 10 2021 lúc 20:00

\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+6\sqrt{x-1}=14\\ \Leftrightarrow7\sqrt{x-1}=14\\ \Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x-1=4\\ \Leftrightarrow x=5\left(tm\right)\\ b,ĐK:-2\le x\le2\\ PT\Leftrightarrow\sqrt{2-x}\left(1-\sqrt{2+x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2-x=0\\2+x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
LL
29 tháng 10 2021 lúc 20:02

a) ĐKXĐ: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{x-1}+6\sqrt{x-1}=14\)

\(\Leftrightarrow7\sqrt{x-1}=14\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\)

b) ĐKXĐ: \(-2\le x\le2\)

\(pt\Leftrightarrow\sqrt{2-x}-\sqrt{\left(2-x\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(1-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Bình luận (0)