Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 3 2019 lúc 7:49

Chọn đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 5:24

Đặt  và giả thiết trở thành 

Suy ra 

Phương trình có nghiệm khi 

Chọn D.

Bình luận (0)
H24
Xem chi tiết
HM
25 tháng 8 2023 lúc 15:25

a, Ta có: \(\sqrt[6]{a^4}=\sqrt[3]{\sqrt{a^4}}=\sqrt[3]{\sqrt{\left(a^2\right)^2}}=\sqrt[3]{\left|a^2\right|}=\sqrt[3]{a^2}\)

Vậy \(\sqrt[6]{a^4}=\sqrt[3]{a^2}\)

b, \(\sqrt[3]{a^2}=\sqrt[9]{a^6}=\sqrt[12]{a^8}\)

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 2 2017 lúc 12:13

Bình luận (0)
NV
Xem chi tiết
NL
30 tháng 8 2021 lúc 20:00

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)

Tương tự và cộng lại:

\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)

\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)

Mặt khác ta có:

\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)

\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 4 2019 lúc 11:25

Chọn đáp án B

Bình luận (0)
TD
Xem chi tiết
NT
10 tháng 4 2021 lúc 22:33

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TV
29 tháng 5 2021 lúc 6:59
Bình luận (0)
 Khách vãng lai đã xóa
NH
6 tháng 6 2021 lúc 8:54

undefined

Bình luận (0)
 Khách vãng lai đã xóa
TX
Xem chi tiết
NT
12 tháng 8 2023 lúc 14:23

a^3+b^3+c^3=3abc

=>(a+b)^3+c^3-3ab(a+b)-3bac=0

=>(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)=0

=>(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-bc-ac=0

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>(a-c)^2+(a-b)^2+(b-c)^2=0

=>a=b=c

=>A=(1+b/b)(1+b/b)(1+c/c)

=2*2*2=8

Bình luận (0)
UH
Xem chi tiết