Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PM
Xem chi tiết
HL
Xem chi tiết
NH
22 tháng 1 2016 lúc 22:31

a^4-1 = (a-1)(a+1)(a^2+1)

Nếu a chia 5 du 1 suy ra n-1 chia het cho 5

Nêu a chia 5 du 2 suy ra n^2 chia 5 du 4 suy ra n^2+1 chia het cho 5  (dùng đồng dư)

tương tự với a chia 5 du 3,4

vay a^4-1 luôn chia het cho 5 

 

CM chia hết 7 là xong 

Nêu a chia 7 du 1 ,5,6 thay nhu tren vao a^4-1 la xong 

Voi a chia 7 du 2,3,4

Neu a chia 7 du 2 thi a^4 chia 7 du 16 ; a^2 chia 7 du 4<=>15a^2 chia 7 du 60

suy ra a^4+15a^2+1 chia 7 du 16+60+1=77 chia het cho 7

Neu a chia 7 du 3, 4 tươ]ng tu

 

 

 

 

Bình luận (0)
HL
Xem chi tiết
HL
Xem chi tiết
H24
22 tháng 1 2016 lúc 21:32

Ta có: a không chia hết cho 5

=> a chia 5 dư 1;2;3 hoặc 4

=>a4 chia 5 dư 1                    (tính chất)

=>a4-1 chia hết cho 5

Phần sau làm tương tự

Bình luận (0)
HL
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
AH
12 tháng 1 2020 lúc 0:04

Lời giải:

Đặt biểu thức đã cho là $A$

$\bullet$ Chứng minh $A\vdots 5$

Ta nhớ đến tính chất quen thuộc là: Một số chính phương khi chia cho $5$ có dư là $0,1,4$

Do đó, với $a$ là số nguyên không chia hết cho $5$ thì $a^2$ chia $5$ dư $1$ hoặc $4$

Hay $a^2\equiv \pm 1\pmod 5$

$\Rightarrow a^4\equiv 1\pmod 5\Rightarrow a^4-1\equiv 0\pmod 5$

$\Rightarrow A=(a^4-1)(a^4+15a^2+1)\equiv 0\pmod 5$

Hay $A\vdots 5(*)$

----------------------

Chứng minh $A\vdots 7$

$A=(a^4-1)(a^4+a^2+1)+14a^2(a^4-1)$

$=(a^2+1)(a^6-1)+14a^2(a^4-1)$

Ta nhớ đến tính chất quen thuộc: Một số lập phương khi chia cho $7$ có dư $0,1,6$

Do đó, với $a$ là số không chia hết $7$ thì $a^3$ chia $7$ có thể dư $1,6$

Hay $a^3\equiv \pm 1\pmod 7$

$\Rightarrow a^6\equiv 1\pmod 7\Rightarrow a^6-1\equiv 0\pmod 7$

$\Rightarrow A=(a^2+1)(a^6-1)+14a^2(a^4-1)\equiv 0\pmod 7$

Hay $A\vdots 7(**)$

Từ $(*); (**)\Rightarrow A\vdots 35$

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NM
5 tháng 2 2021 lúc 10:30

\(=\left(a+a^2\right)+\left(a^3+a^4\right)+\left(a^5+a^6\right)+...+\left(a^{29}+a^{30}\right)=\)

\(=a\left(a+1\right)+a^3\left(a+1\right)+a^5\left(a+1\right)+...+a^{29}\left(a+1\right)=\)

\(=\left(a+1\right)\left(a+a^3+a^5+...+a^{29}\right)⋮\left(a+1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa