Những câu hỏi liên quan
NT
Xem chi tiết
NT
16 tháng 4 2023 lúc 23:43

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810

Bình luận (0)
SB
Xem chi tiết
KN
Xem chi tiết
NT
Xem chi tiết
NL
12 tháng 12 2020 lúc 18:11

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)

Bình luận (0)
3T
Xem chi tiết
NT
Xem chi tiết
HH
12 tháng 12 2020 lúc 23:16

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

Bình luận (3)
PB
Xem chi tiết
CT
27 tháng 5 2019 lúc 11:08

Bình luận (0)
LN
Xem chi tiết
NL
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
12 tháng 2 2017 lúc 4:30

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 10 2019 lúc 3:45

Bình luận (0)