Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 12 2019 lúc 9:57

Đáp án là A

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 10 2018 lúc 16:35

Chọn C

Bình luận (1)
H24
Xem chi tiết
PB
Xem chi tiết
CT
18 tháng 9 2019 lúc 16:19

Chọn C.

+) TXĐ: D = R

+) Ta có đạo hàm y’ = ( x2 - 2( m + 3) x + 4) .ex .

Hàm số nghịch biến trên TXĐ khi y’ = ( x2 - 2( m + 3) x + 4) .ex ≤ 0 mọi x

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 8 2017 lúc 10:04

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 6 2017 lúc 17:15

Đáp án A.

Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều. 

Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị

Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m

Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.

Để đồ thị hàm số có 5 cực trị 

=>S = {3;4;5} => 3+4+5 = 12

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 6 2017 lúc 9:47

Đáp án A

Đồ thị hàm số có bốn tiệm cận  ⇔ m 2 x + m − 1 = 0  có hai nghiệm

⇔ m ≠ 0 m − 1 < 0 ⇔ m < 1 ∪ m ≠ 0

Bình luận (0)
H24
Xem chi tiết
NL
29 tháng 7 2021 lúc 23:16

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2019 lúc 15:53

Bình luận (0)
CQ
Xem chi tiết