Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 1 2018 lúc 3:53

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3  

Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2

Số tam giác vuông được tạo thành là  4 C n 2

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 4 2018 lúc 11:37

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là:  C 2 n 3

Số đường chéo đi qua tâm là n => số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2 .

Số tam giác vuông được tạo thành là:  4 . C n 2 .

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 1 8 .

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 3 2017 lúc 15:51

Đáp án C

Gọi  A  là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm  O có 2n đường chéo qua tâm  O .

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm  O  và một đỉnh trong  4 n   - 2   đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là  C 2 n 1 . C 4 n - 2 1 .

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 9 2018 lúc 5:59

Số phần tử của tập X là  C 4 n 3

Gọi A là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O có 2n đường chéo qua tâm O.

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm O và một đỉnh trong 4n-2 đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là C 2 n 1 . C 4 n - 2 1 .

Từ giả thiết suy ra  P A = C 2 n 1 . C 4 n - 2 1 C 4 n 3 = 1 13 ⇒ n = 10

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 10 2019 lúc 7:25

Bình luận (0)
VA
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 9 2017 lúc 11:01

Đáp án D

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật có 4 đỉnh là đỉnh của đa giác. Do đó số hình chữ nhật là  C n 2

Bình luận (0)
DA
Xem chi tiết
NL
4 tháng 8 2021 lúc 18:38

a. Đa giác n đỉnh có \(C_n^2\) đoạn thẳng nối các đỉnh

Trong đó có n cạnh (là đường nối 2 đỉnh liền kế)

\(\Rightarrow\) Có \(C_n^2-n\) đường chéo

b. Cứ 3 đỉnh tạo thành 1 tam giác nên số tam giác là: \(C_n^3\)

c. Tam giác có 2 cạnh là 2 cạnh của tam giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề

\(\Rightarrow\) có n tam giác thỏa mãn

d. Số tam giác chỉ có 1 cạnh là cạnh đa giác: có n cách chọn 2 điểm liền kề, ta có \(n-4\) cách chọn 1 điểm còn lại ko kề với 2 điểm trên

\(\Rightarrow n\left(n-4\right)\) tam giac thỏa mãn

e. Số tam giác thỏa mãn: \(C_n^3-\left(n+n\left(n-4\right)\right)\) 

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 7 2017 lúc 5:28

Đáp án D

Tìm công thức tính số đường chéo: Số đoạn thẳng tạo bởi n đỉnh là  C n 2 , trong đó có n cạnh, suy ra số đường chéo là  C n 2 - n .

+ Đa giác đã cho có 135 đường chéo nên  C n 2 - n   =   135 .

+ Giải phương trình

n ! ( n - 2 ) ! 2 ! = 135   ( n ∈ N , n ≥ 2 )

⇔ ( n - 1 ) n - 2 n = 270

⇔ n 2 - 3 n - 270 = 0

<=> n = 18

Bình luận (0)