Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
AH
31 tháng 3 2023 lúc 20:50

Lời giải:
$xy+12=x+y$

$\Rightarrow xy-x-y=-12$

$\Rightarrow x(y-1)-y=-12$

$\Rightarrow x(y-1)-(y-1)=-11$

$\Rightarrow (y-1)(x-1)=-11$

Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Ta có bảng:

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 10 2023 lúc 21:31

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NH
7 tháng 4 2023 lúc 17:21

\(xy\) - \(x\) + \(y\) = 1

(\(xy\) + \(y\)) - \(x\) - 1 = 0

\(y\)(\(x\) + 1) - ( \(x\) + 1) = 0

(\(x\) + 1)( \(y\) - 1) = 0

\(\left[{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Bình luận (1)