a, Tính giá trị biểu thức:
A = cos 2 20 0 + cos 2 4 0 0 + cos 2 5 0 0 + cos 2 7 0 0
b, Rút gọn biểu thức:
B = sin 6 a + cos 6 a + 3 sin 2 a . cos 2 a
Tính giá trị của biểu thức:
a) a sin 0 độ + b cos 0 độ + c sin 90 độ
b) a cos 90 độ + b sin 90 độ + c sin 180 độ
c) \(a^2sin90\) độ + b bình cos 90 độ + c bình cos 180 độ
a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)
\(=a\cdot0+b\cdot1+c\cdot1\)
=b+c
b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)
\(=a\cdot0+b\cdot1+c\cdot0\)
=b
c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)
\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)
\(=a^2-c^2\)
tính giá trị biểu thức:
a) A = cos2 52' sin 452 +sin252' cos 45'
b) B = sin45 cos247+ sin247 cos45
a: \(=\dfrac{\sqrt{2}}{2}\left(cos^252^0+sin^252^0\right)=\dfrac{\sqrt{2}}{2}\)
b: \(=\dfrac{\sqrt{2}}{2}\left(cos^247^0+sin^247^0\right)=\dfrac{\sqrt{2}}{2}\)
bài 10 Tính giá trị biểu thức:
a) 3 cot 60 độ / 2 cos^2 30độ -1
b) cos60 độ/1+sin60 độ + 1/tan 30 độ
tính giá trị biểu thức.
a. tan 45 độ + cos ^2 20 độ + tan ^2 20 độ x cos ^2 20 độ
Tính giá trị biểu thức:
\(A=\cos^21^0+\cos^22^0+\cos^23^0+...+\cos^287^0+\cos^288^0+\cos^289^0-\frac{1}{2}\)
Mọi người giúp mình với ạ...
\(\cos^21^o+\cos^289^o=\cos^21^o+\cos^2\left(90^o-1^o\right)=\cos^21^o+\sin^21^o=1\)
\(\cos^22^o+\cos^288^o=\cos^22^o+\cos^2\left(90^o-2^o\right)=\cos^22^o+\sin^22^o=1\)
.......
\(\cos^244^o+\cos^246^o=\cos^244^o+\cos^2\left(90^o-44^o\right)=\cos^244^o+\sin^244^o=1\)
\(\cos^245^o=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
=> \(A=1.44+\frac{1}{2}-\frac{1}{2}=44\)
Không dùng máy tính, tính giá trị của các biểu thức:
\(A = \cos {75^0}\cos {15^0}\);
\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}}\).
\(A = \cos {75^0}\cos {15^0} = \frac{1}{2}\left[ {\cos \left( {{{75}^0} - {{15}^0}} \right) + \cos \left( {{{75}^0} + {{15}^0}} \right)} \right] \\= \frac{1}{2}.\cos {60^0}.\cos {90^0} = 0\)
\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}} = \frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right] \\= \frac{1}{2}\sin \left( { - \frac{{2\pi }}{{12}}} \right).\sin \left( {\frac{{12\pi }}{{12}}} \right) = - \frac{1}{2}\sin \frac{\pi }{6}\sin \pi = 0\)
Tính giá trị của biểu thức sau:
\(A=cos\dfrac{\pi}{7}cos\dfrac{4\pi}{7}cos\dfrac{5\pi}{7}\)
\(B=sin60^0.sin42^0.sin66^0.sin78^0\)
\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)
\(\Rightarrow A=\dfrac{1}{8}\)
\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)
\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)
\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)
\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)
\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)
Biểu thức này ko thể rút gọn tiếp được
Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:
\(A = {(\sin {20^o} + \sin {70^o})^2} + {(\cos {20^o} + \cos {110^o})^2}\)
\(B = \tan {20^o} + \cot {20^o} + \tan {110^o} + \cot {110^o}.\)
Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} = - \cos {70^o} = - \sin {20^o}\)
\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)
Ta có: \(\tan {110^o} = - \tan {70^o} = - \cot {20^o};\;\cot {110^o} = - \cot {70^o} = - \tan {20^o}.\)
\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)
Câu 1. Không dùng máy tinh,tính giá trị biểu thức:
a/ \(A=sin^234^o+\dfrac{tan48^o}{cot42^o}+sin^256^o\)
b/ B=\(cos^213^o+\dfrac{3tan26^o}{cot64^o}+cos^277^o+2cot32^o.cot58^o\)
c/\(B=\dfrac{5tan55^o}{cot35^o}-2sin^261^o-2sin^229^o\)
\(a,A=\sin^234^0+\cos^234^0+\dfrac{\cot42^0}{\cot42^0}=1+1=2\\ b,B=\left(\cos^213^0+\sin^277^0\right)+\dfrac{3\cot64^0}{\cot64^0}+2\cot32^0\cdot\tan32^0\\ B=1+3+2\cdot1=6\\ c,B=\dfrac{5\cot35^0}{\cot35^0}-2\left(\sin^261^0-\cos^261^0\right)=5-2\cdot1=3\)
1/ Tính giá trị biểu thức:
A = \(cos^6\alpha+sin^6\alpha+3sin^2\alpha.cos^2\alpha\)
2/ Cho △ABC viết BC = 20cm, ∠ABC = \(40^o\), ∠ACB = \(30^o\). Tính AB (Làm tròn đến chữ số thập phân thứ 2)
Bài 1:
Ta có: \(A=\sin^6\alpha+3\cdot\sin^2\alpha\cdot\cos^2\alpha+\cos^6\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3-3\cdot\sin^2\alpha\cdot\cos\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)
\(=1^3\)
=1