Những câu hỏi liên quan
NB
Xem chi tiết
NT
27 tháng 1 2022 lúc 20:43

sửa đề : 

\(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\Leftrightarrow x=1\)

Bình luận (0)
PQ
Xem chi tiết
PC
14 tháng 4 2020 lúc 15:37

a, x3-3x2+3x-1=0                                                   b, (2x-5)2-(x+2)2=0                                    c, x2-x=3x-3

<=>x3-x2-2x2+2x+x-1=0                                         <=>(2x-5-x-2)(2x-5+x+2)=0                       <=>x2-x-3x+3=0

<=>(x3-x2)-(2x2-2x)+(x-1)=0                                   <=>(x-7)(3x-3)=0                                       <=>x2-4x+3=0

<=>x2(x-1)-2x(x-1)+(x-1)=0                                    <=>x-7=0 hoặc 3x-3=0                               <=>x2-x-3x+3=0

<=>(x-1)(x2-2x+1)=0                                              1, x-7=0                 2, 3x-3=0                       <=>(x2-x)-(3x-3)=0

<=>(x-1)(x-1)2=0                                                      <=>x=7                <=>x=1                          <=>x(x-1)-3(x-1)=0

<=>x-1=0                                                                Vậy TN của PT là S={7;1}                           <=>(x-1)(x-3)=0

<=>x=1                                                                                                                                       <=>x-1=0 hoặc x-3=0

Vậy tập nghiệm của phương trình là S={1}                                                                                1, x-1=0                      2, x-3=0

                                                                                                                                                     <=>x=1                       <=>x=3

                                                                                                                                                     Vậy TN của PT là S={1;3}

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
25 tháng 2 2022 lúc 12:41

a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)

b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)

d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)

Bình luận (0)
BY
25 tháng 2 2022 lúc 12:54

a) Ta có: 4x-20=0

⇔4x=20

hay x=5

Vậy: S={5}

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=−12

hay x=-4

Bình luận (0)
H24
Xem chi tiết
ND
28 tháng 1 2023 lúc 20:29

Thấy \(x=0\) không phải là nghiệm của pt : Chia hai vế cho \(x^2\) ta được :

\(\Leftrightarrow x^2+3x+4+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)+4=0\)

\(Đặt\) : \(x+\dfrac{1}{x}\) \(=t\) , thay vào pt ta được :

\(\Leftrightarrow t^2-2+3t+4=0\)

\(\Leftrightarrow\left(t+1\right)\left(t+2\right)=0\)

\(TH1:\) \(\Leftrightarrow x+\dfrac{1}{x}+1=0\)

\(\dfrac{x^2+1+x}{x}=0\)

hình như sai thì phải á bạn

\(TH2:\) \(x+\dfrac{1}{x}+2=0\)

\(x^2+2x+1=0\)

\(\Rightarrow x=-1\)

\(Vậy...\)

mong các anh chị lớp trên xem hộ em bài này với ạ chứ em cũng mới chỉ  có lớp 8 thôi ạ

 

Bình luận (0)
NT
Xem chi tiết
TQ
7 tháng 10 2018 lúc 16:20

(3x-2)(4x-3-2x+2)-(2-3x)(x-1)

(3x-2)(2x-1)-(3x-2)(1-x)

(3x-2)(2x-1-1+x)

(3x-2)(3x-2)

tớ làm ko đúng thì chỉ cho nhé

Bình luận (0)
NT
7 tháng 10 2018 lúc 16:31

trong (4x-3-2x+2) ban lấy 2x ở đâu vậy

Bình luận (0)
PK
Xem chi tiết
TH
29 tháng 7 2021 lúc 16:03

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

Bình luận (2)
CN
Xem chi tiết
TN
11 tháng 2 2018 lúc 13:24

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

Bình luận (0)
LG
27 tháng 5 2018 lúc 11:48

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

Bình luận (0)
H24
16 tháng 2 2020 lúc 7:15

Phần a,b,c,d,e các bạn kia giải rồi nha anh !

f,Ta có \(3.x^3-3.x^2-6.x=0\)

           \(\Leftrightarrow3.x.\left(x+1\right).\left(x-2\right)\)

             \(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0:3\)(anh không cần phải viết dòng này cũng được ạ )

            \(\Leftrightarrow x.\left(x+1\right).\left(x-2\right)=0\)

             \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}x+1=0\)( 3 trường hợp nhé anh )

              \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}x=-1\)

Vậy \(x_1=0;x_2=-1;x_3=2\)

STUDY WELL !

Bình luận (0)
 Khách vãng lai đã xóa
QM
Xem chi tiết
NT
26 tháng 12 2021 lúc 22:59

a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
HP
11 tháng 1 2022 lúc 19:26

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)

\(\Leftrightarrow x-1=3x-2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (0)
NT
11 tháng 1 2022 lúc 20:57

c: =>x-3=0

hay x=3

d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

Bình luận (0)