Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
N2
Xem chi tiết
NM
27 tháng 9 2019 lúc 23:04

(2m-3)(n-3)=9

Bình luận (0)
KQ
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 12 2019 lúc 16:29

lol

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
CH
Xem chi tiết
NT
5 tháng 2 2017 lúc 15:17

Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)

=> m=5;n=1;p=2

Bình luận (0)
TN
Xem chi tiết
DA
Xem chi tiết
CD
Xem chi tiết
PP
19 tháng 6 2017 lúc 16:06

Ta có \(\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Vì m là số nguyên nên \(\frac{n^2+n+1}{n+1}\)

nguyên

=> 1 chia hết cho (n+1)

=> \(n+1\in\left\{1,-1\right\}=>n\in\left\{0,-2\right\}\)

Với n = 0 thì: \(m=\frac{0+0+1}{0+1}=1\)

Với n = -2 thì: \(m=\frac{4-2+1}{-2+1}=-3\)

Vậy, các cặp (m;n) thảo mãn là: (0;1),(-2;-3)

Nếu đúng nhớ tk nhé

Bình luận (0)
HT
Xem chi tiết
H24
7 tháng 1 2020 lúc 18:36

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 1 2020 lúc 20:28

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 1 2020 lúc 20:29

í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn 

Bình luận (0)
 Khách vãng lai đã xóa