Cho đồ thị (C). y = x 3 - x + 3 . Tiếp tuyến tại N(1;3) cắt (C) tại điểm thứ 2 là M ( M ≠ N ) .Tọa độ M là
A. M (2;9)
B. M (-2;-3)
C. M (-1;3)
D. M(0;3)
Cho đồ thị (C):y=x^3-3x^2+x+1 Tiếp tuyến của đồ thị (C) tại điểm M có hoành độ x = 0 cắt đồ thị (C) tại điểm N (khác M). Tìm tọa độ điểm N
A. N(4;-3)
B. N(1;0)
C. N(3;4)
D. N(-1;-4)
Đáp án C
Ta có:
Suy ra PTTT của (C) tại M là
Khi đó PT hoành độ giao điểm của (C) và là:
Cho hàm số y= x3- x2+ x= 1 có đồ thị ( C) . Tiếp tuyến tại điểm N( x; y) của (C) cắt đồ thị (C) tại điểm thứ hai là M( -1; -2) . Khi đó x+ y=?
A. 1
B. 2
C. 3
D. 4
+ Đường thẳng ∆ đi qua điểm M( -1; -2) có hệ số góc k có dạng ∆: y= k( x+ 1) -2 .
+ ∆ là tiếp tuyến của (C ) khi và chỉ khi hệ sau có nghiệm:
x 3 - x 2 + x + 1 = k ( x + 1 ) - 2 ( 1 ) 3 x 2 - 2 x + 1 = k ( 2 )
+Thay (2) vào (1) ta được
x3- x2+ x+ 1= ( 3x2- 2x+1) (x+1) -2
Hay ( x+ 1) 2(x-1) =0
Suy ra x= -1 ( trùng với M nên loại ) hoặc x= 1
Với x= 1 thì y= 2. Vậy N( 1;2)
Chọn C.
Cho đồ thị C : y = x 3 - 3 x 2 + x + 1 . Tiếp tuyến của đồ thị (C) tại điểm M có hoành độ x = 0 cắt đồ thị (C) tại điểm N (khác M). Tìm tọa độ điểm N.
A. N(4;-3)
B. N(1;0)
C. N(3;4)
D. N(-1;-4)
Cho hàm số \(y = {x^3} - 3{x^2} + 4x - 1\) có đồ thị là \((C)\). Hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
A. 1 .
B. 2.
C. -1 .
D. 3 .
\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)
\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)
Dấu = xảy ra khi x=1
=>Chọn A
Cho đồ thị ( C ) y = x 3 - x + 3 Tiếp tuyến tại N(1;3) cắt (C) tại điểm thứ 2 là M ( M ≢ N ) Tọa độ M là
A. M(2;9)
B. M(-2;-3)
C. M(-1;3)
D. M(0;3)
Ta có: y ' = 3 x 2 - 1 ⇒ y ' 1 = 2 ⇒ PTTT tại N(1;3) là
y = 2 (x - 1 ) + 3 = 2x + 1
Xét phương trình hoành độ giao điểm của (C) với tiếp tuyến ta có
x 3 - x + 3 = 2x + 1 ⇔ x = -2, x = 1
Vậy tọa M (-2;-3)
Đáp án cần chọn là B
1//Cho hàm số y=x3- 2x2+ 2x có đồ thị (C). Gọi x1,x2 là hoành độ các điểm M,N trên (C), mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng y=-x+2017. Khi đó x1+x2 bằng bao nhiêu?
2// Hoành độ tiếp điểm của tiếp tuyến song song với trục hoành của đồ thị hàm số y=x3-3x+2
3// Tiếp tuyến của đồ thị y=\(\frac{x^3}{3}+3x^2-2\) Có hệ số góc k=-9 , có phương trình là gì
4//Cho hs \(y=-x^3+3x^3-3\) có đồ thị (C) Số tiếp tuyến (C) vuông góc với đường thẳng \(y=\frac{1}{9}x+2017\)
1.
Tiếp tuyến vuông góc với \(y=-x+2017\) nên có hệ số góc \(k=\frac{-1}{-1}=1\)
\(y'=3x^2-4x+2=1\)
\(\Rightarrow3x^2-4x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2=1+\frac{1}{3}=\frac{4}{3}\)
2.
Tiếp tuyến song song Ox nên có hệ số góc \(k=0\)
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
3.
\(y'=x^2+6x=-9\Rightarrow\left(x+3\right)^2=0\Rightarrow x=-3\Rightarrow y=16\)
Pt tiếp tuyến: \(y=-9\left(x+3\right)+16=-9x-11\)
4.
Tiếp tuyến vuông góc \(y=\frac{1}{9}x+2017\) có hệ số góc \(k=\frac{-1}{\frac{1}{9}}=-9\)
\(y'=-3x^2+6x=-9\Leftrightarrow3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Có 2 tiếp điểm nên có 2 tiếp tuyến thỏa mãn
Cho đồ thị hàm số C : y = − 2 x + 3 x − 1 . Viết phương trình tiếp tuyến của đồ thị (C) tại
giao điểm của (C) và đường thẳng y = x − 3 .
A. y = − x + 3 v à y = − x − 1
B. y = − x − 3 v à y = − x + 1
C. y = x − 3 v à y = x + 1
D. y = − x + 3 v à y = − x + 1
Đáp án B
Tọa độ giao điểm của (C) và đường thẳng y = x − 3 là nghiệm của hệ:
y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )
y ' = − 1 x − 1 2
Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 ) là:
y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1
Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 ) là:
y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3
Cho hàm số y = x 4 + x 2 − 3 có đồ thị (C). Khi đó hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = 1 là
A. -1
B. 2
C. -4
D. 6
Cho hàm số y = x 4 + x 2 − 3 có đồ thị (C). Khi đó hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = 1 là
A. -1.
B. 2.
C. -4.
D. 6.