Những câu hỏi liên quan
ET
Xem chi tiết
NT
31 tháng 12 2023 lúc 13:37

a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

=>(a+5)(b-6)=(a-5)(b+6)

=>ab-6a+5b-30=ab+6a-5b-30

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

=>\(\dfrac{a}{b}=\dfrac{5}{6}\)

b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)

Bình luận (0)
PL
Xem chi tiết
H24
Xem chi tiết
TT
16 tháng 7 2015 lúc 8:05

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

Bình luận (0)
TM
23 tháng 9 2017 lúc 13:37

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

Bình luận (0)
NM
14 tháng 1 2018 lúc 21:17

Ta có a/b = c/d 

 => a/c= b/d 

adtccdtsbn ta có : 

Bình luận (0)
DL
Xem chi tiết
VP
Xem chi tiết
ND
28 tháng 9 2021 lúc 18:58

j vậy bẹn, đây là sinh lớp 7 mak :v ?

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NH
Xem chi tiết
H24

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk\)

                                      \(c=dk\)

=> \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{bk^2+b^2}=\frac{k}{k^2}\left(1\right)\)

     \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{dk^2+d^2}=\frac{k}{k^2}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)=> Đpcm

Bình luận (0)
TL
Xem chi tiết
LT
25 tháng 9 2016 lúc 13:44

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a.b}{c.d}\)(Dấu "." là dấu nhân)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Theo tính chất ..............(mk quên câu này rùi)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)

Bình luận (0)
TA
Xem chi tiết
MG
16 tháng 10 2021 lúc 20:54

Ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a-b}{c-d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (1)

Lại có \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{a.b}{c.d}\left(\text{ do }\frac{a}{b}=\frac{c}{d}\right)\)(2)

Từ (1) và (2) => \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a.b}{c.d}\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NM
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa