Một hình thang vuông ABCD có đường cao A D = π đáy nhỏ A B = π đáy lớn C D = 2 π Cho hình thang đó quay quanh CD, ta được vật tròn xoay có thể tích bằng:
A. 4 3 π 4
B. 7 3 π 4
C. 10 3 π 4
D. 13 3 π 4
Một hình thang vuông ABCD có đường cao A D = π , đáy nhỏ A B = π , đáy lớn C D = 2 π . Cho hình thang đó quay quanh CD, ta được vật tròn xoay có thể tích bằng:
A. 4 3 π 4
B. 7 3 π 4
C. 10 3 π 4
D. 13 3 π 4
Cho hình thang ABCD có đáy nhỏ AB là 12cm, đáy lớn CD
36cm, Chiều cao bằng trung bình cộng hai đáy. Từ B kẻ đường BK
vuông góc với AC ; Từ D kẻ đường DH vuông góc với AC.
a) Tính diện tích hình thang ABCD.
b) Tìm tỉ số đường cao BK và đường cao DH
Cho hình thang ABCD có đáy nhỏ AB là 12cm đáy lớn CD là 36cm. Chiều cao bằng trung bình cộng 2 đáy.từ Bker đường BK vuông góc với AC từ D kẻ dường DH vuông góc với AC.
a: Tính diện tích hình thang ABCD
b,Tìm tỉ số hai đường cao
cho hình thang vuông ABCD có AD=a là đường cao, đáy nhỏ AB=a, đáy lớn CD=2a. Thể tích của khối tròn xoay khi hình thang quay quanh CD là
Khi quay quanh CD sẽ tạo ra hình khối gồm 2 khối:
- Khối trụ chiều cao \(AB=a\) bán kính đáy \(r=AD=a\Rightarrow V_1=\pi.AB^2.AD^2=\pi a^3\)
- Khối nón chiều cao \(CH=\dfrac{1}{2}CD=a\) bán kính đáy \(BH=AD=a\Rightarrow V_2=\dfrac{1}{3}\pi.a^2.a=\dfrac{\pi a^3}{3}\)
\(\Rightarrow V=V_1+V_2=\pi a^3+\dfrac{\pi a^3}{3}=\dfrac{4\pi a^3}{3}\)
Hình thang ABCD có đáy lớn CD = 10, đáy nhỏ = đường cao, đường chéo vuông góc với cạnh bên. Tính đường cao hình thang.
Một hình thang ABCD có đáy bé AB là 9 cm,
đáy lớn CD là 27cm, chiều cao của hình thang bằng
trung bình cộng hai đáy; Từ D hạ DH vuông góc với
AC, từ B hạ BK vuông góc với AC
a) Tính diện tích hình thang ABCD?
b) Tìm tỉ số chiều cao BK và DH?
a: Chiều cao là (9+27)/2=18cm
S ABCD=1/2(9+27)*18=324cm2
b: S ABC/S ACD=AB/CD=9/27=1/3
=>2*AC*BK/2*AC*DH=1/3
=>BK/DH=1/3
Một hình thang vuông ABCD có đáy nhỏ AB = 3,6cm; đáy lớn CD =6,3cm và cạnh góc vuông AD =4,5cm. a;Tính diện tích hình thang ABCD. b; Trên cạnh AD lấy điểm E cách D một khoảng 0,5 cm.Từ E kẻ đường thẳng song song với DC cắt BC atij G. Tính độ dài đoạn thẳng EG.
cắt BC tại G nha mik đánh nhầm
Câu 11.11. Tính diện tích hình thang ABCD, có đường cao bằng 12 cm, hai đường chéo AC và BD vuông góc với nhau, DB = 15 cm.
Câu 11.12. Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tìm đường cao của hình thang
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
Cho hình thang vuông ABCD có đường cao AB=2a (a>0), đáy nhỏ AD=a, đáu lớn BC=4a. CMR: AC vuông góc BD