Cho hình chóp S.ABC có SA = SB và CA = CB. Góc giữa hai đường thẳng SC và AB bằng
Cho hình chóp S.ABC có SA=SB=CA=CB=AB=a, S C = a 3 2 , G là trọng tâm của tam giác ABC. là mặt phẳng đi qua G, song song với các đường thẳng AB và SB. Gọi M, N, P lần lượt là giao điểm của với các đường thẳng BC, AC, SC. Góc giữa hai mặt phẳng (MNP) và (ABC) bằng
A. 90 0 C
B. 45 0 C
C. 30 0 C
D. 60 0 C
Chọn đáp án D
Ta có
Khi đó
Gọi I là trung điểm của AB.
Ta có SA=SB=AB=CA=CB=a nên tam giác SAB và tam giác ABC đều cạnh a.
Khi đó A B ⊥ S I , A B ⊥ C I và S I = C I = a 3 a
Mặt khác S I = C I = S C = a 3 2 nên ∆ S I C đều
Vậy góc giữa hai mặt phẳng (MNP) và (ABC) bằng 60 0
Cho hình chóp S.ABC có SA=SB=SC=AB=AC=a, BC=a 2 . Số đo góc giữa hai đường thẳng AB và SC bằng ?
A. 90 o
B. 60 o
C. 45 o
D. 30 o
Đáp án là B
Cách 1. Xác định và tính góc giữa hai đường thẳng.
Tam giác ABC vuông tại A
Do SA=SB=SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường tròn ngoại tiếp tam giác ABC mà tam giác ABC vuông tại A nên H là trung điểm của BC.
Dựng hình bình hành ABCD. Khi đó:(AB,SC)=(CD,SC) và CD=AB=a. Tam giác SBC vuông tại S
có SH là đường trùng tuyến nên SH= a 2 2
Tam giác CDH có
theo định lý Cô- Sin ta có
Tam giác SHD vuông tại H nên
Tam giác SCD có:
Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng.
Theo giả thiết có
Ta có
Suy ra:
Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a, BC = a 2 . Số đo góc giữa hai đường thẳng AB và SC bằng
A. 900.
B. 600.
C. 450.
D. 300.
Chọn B.
Cách 1. Xác định và tính góc giữa hai đường thẳng
∆ ABC vuông tại A
Do SA = SB = SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường trong ngoại tiếp tam giác ABC mà ∆ ABC vuông tại A nên H là trung điểm của BC. Dựng hình bình hành ABCD. Khi đó (AB;SC) = (CD;SC) và CD = AB = a
∆
SBC vuông tại S (vì có SH là đường trung tuyến nên SH =
a
2
2
theo định lí Cô – Sin ta có
∆ SHD vuông tại H nên
∆ SCD có
Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng
Đặt Theo giả thiết ta có:
Ta có:
Xét
Suy ra:
Cho hình chóp S.ABC có SA=SB=SC=AB=AC=a và BC=a 2 (tham khảo hình vẽ bên). Góc giữa hai đường thẳng AB và SC là
A. 45°.
B. 60°.
C. 90°.
D. 30°.
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=SB=SC=2a. Cosin của góc giữa đường thẳng SC và mặt phẳng (ABC) bằng
A. 3 6
B. 2 5
C. 2 6
D. 3 5
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A AB = SA = SB =SC = 2. Tính góc giữa hai đường thẳng AB và SC.
Dựng hình vuông ABDC
\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)
\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)
Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều
\(\Rightarrow\widehat{SCD}=60^0\)
Cho hình chóp S.ABC có SA=SB=SC=AB=AC=a, B C = a 2 . Tính số đo của góc giữa hai đường thẳng AB và SC ta được kết quả
A. 90 °
B. 30 °
C. 60 °
D. 45 °
Chọn C
* Gọi H là hình chiếu vuông góc của S lên mặt phẳng (ABC), theo đầu bài SA=SB=SC và tam giác ABC vuông cân tại A ta có H là trung điểm của BC. Gọi M, N lần lượt là trung điểm của SA, SB ta có:
Cho hình chóp S.ABC có SA=SB=SC=1, BC= 2 . Tính góc giữa hai đường thẳng AB, SC
A. 45 0
B. 120 0
C. 30 0
D. 60 0
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và S A = S B = S C = a . Gọi M là trung điểm AB. Tính góc giữa 2 đường thẳng SM và BC.
A. 30 °
B. 60 °
C. 90 °
D. 120 °
Đáp án B
c os S M ; B C = c os S M → ; B C → = S M → . B C → S M . B C , ta có S M = a 2 2 ; B C = a 2 ;
S
M
→
.
B
C
→
=
1
2
S
B
→
+
S
A
→
S
C
→
−
S
B
→
=
−
1
2
S
B
2
=
−
1
2
a
2
;
c
os
S
M
;
B
C
^
=
1
2
⇒
S
M
;
B
C
^
=
60
∘