CTR với mọi số nguyên n thì
(n - 1).(n + 2) + 12 không chia hết cho 9
CTR với mọi số nguyên n thì
(n - 1).(n + 2) + 12 không chia hết cho 9
cmr với mọi số nguyên n thì (n-1)(n+2) +12 không chia hết cho 9
Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9
=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!
Chắc chắn đúng !!!!!!!!!!!!!!
Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!
Chứng tỏ rằng với mọi số nguyên n thì :
a) ( n-1 )( n+2 ) + 12 không chia hết cho 9
b) ( n+2 )( n+9 ) + 21 không chia hết cho 49
Chứng tỏ rằng với mọi số nguyên n, thì :
a) (n - 1) . (n + 2) +12 không chia hết cho 9
b) (n + 2) . (n + 9) + 21 không chia hết cho 49
( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 ) - Online Math
Đó mk kiếm đc đó
Tick cho mình
Mình cũng có 1 câu hỏi giống như thế này nhưng không biết giải
You and I has the same a life
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 . Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 . Ta có :
A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10
A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 . Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là : A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 . Hay (n-1 ) (n+2) + 12 không chia hết cho 9
Chứng tỏ rằng với mọi số nguyên n, thì :
a) (n - 1) . (n + 2) +12 không chia hết cho 9
b) (n + 2) . (n + 9) + 21 không chia hết cho 49
chứng tỏ rằng với mọi số nguyên n thì (n-1)(n+2)+12 không chia hết cho 9
vì n là số nguyên nên n có 3 dạng:3k; 3k+1;3k+2
*Với n=3k=>n chia hết cho 3=>n-1 và n+2 không chia hết cho 3
=>(n-1)(n+2) không chia hết cho 3. Mà 12 chia hết cho 3 =>(n-1)(n+2)+12 không chia hết cho 3=> tổng đó không chia hết cho 9
*Với n=3k+1=>n-1=3k;n+2=3k+3 chia hết cho 3=>(n-1)(n+2) chia hết cho9. Mà 12 không chia hết cho9=> tổng đó không chia hết cho9.
*Với n=3k+2=>n-1=3k+1; n+2=3k+4 đều không chia hết cho3=>(n-1)(n+2) không chia hết cho3. Mà 12 chia hết cho3 =>tổng đó không chia hết cho3 => tổng đó không chia hết cho9
Vậy ta có đpcm
(n+1)(n+2)=12
=(n+1)*n+(n+1)*2+12
=n2 +1n+2n+2+12
=n2 +(1+2)n+(2+12)
=n2 +3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n-1)(n+2)+12 không chia hết cho 9 với mọi n
vậy mọi n thuộc z thì (n-1)(n+2)+12 không chia hết cho 9
Bài 1 : CHứng tỏ rằng với mọi số nguyên n thì :
a) ( n - 1 ) . ( n + 2 ) + 12 không chia hết cho 19
b ) ( n + 2 ) . ( n+ 9 ) + 21 không chia hết cho 49
CMR với mọi số nguyên n thì (n+2)(n-2)+12 không chia hết cho 9
Ta có:(n+2)(n-2)+12
Áp dụng hàm đảng thức vào biểu thức ta được:
n^2-2^2+12=n^2-4+12=n^2+8.
Xét trường hợp n^2 chia hết cho 9 thì:
n^2+8=9k+8(k thuộc Z)
=>n^2+8 chia cho 9 dư 1.
Xét trường hợp n^2 ko chia hết cho 9 thì:
n^2+8=9h+m+8(m=1,2,3,4,5,6,7,8)
Ta xét các trường hợp m=1,2,3,4,5,6,7,8
=>m=2,3,4,5,6,7,8 thì n^2+8 ko chia hết cho 9
Và m=1 thì n^2+8 chia hết cho 9(loại)
Vậy với mọi trường hợp thì (n+2)(n-2)+12 ko chia hết cho 9 (trừ tường hợp bị loại)
Chứng tỏ rằng với mọi số nguyên n, thì: a) (n – 1)(n + 2) + 12 không chia hết cho 9 Gợi ý: Xét các trường hợp n = 3k; n = 3k + 1; n = 3k + 2 b) (n + 2)(n + 9) + 21 không chia hết cho 49. Gợi ý: Xét các trường hợp n + 2 và n + 9 cùng chia hết cho 7 hoặc có cùng số dư khi chia cho