Đại số lớp 6

MM

Chứng tỏ rằng với mọi số nguyên n, thì :

a) (n - 1) . (n + 2) +12 không chia hết cho 9

b) (n + 2) . (n + 9) + 21 không chia hết cho 49

LN
1 tháng 2 2017 lúc 21:27

( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 ) - Online Math

Đó mk kiếm đc đó

Tick cho mình

Bình luận (0)
LN
1 tháng 2 2017 lúc 21:22

Mình cũng có 1 câu hỏi giống như thế này nhưng không biết giải

You and I has the same a life

Bình luận (0)
TN
2 tháng 2 2017 lúc 9:33

Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 . Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 . Ta có :

A = (n-1 ) (n+2) + 12

A = n x n + n x 2 - n - 2 + 12

A = n x n + n + 10

A = n x (n + 1) + 10

A - 10 = n x (n + 1)

Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 . Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là : A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .

Vậy A - 10 = n x (n + 1) không chia hết cho 9 . Hay (n-1 ) (n+2) + 12 không chia hết cho 9

Bình luận (0)
TN
2 tháng 2 2017 lúc 9:34

b)

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :

A = ( n + 2 ) ( n +9 ) + 21

A = n x n + 9 x n + 2 x n + 18 + 21

A = n x n + 11 x n + 39

A - 39 = n x ( n + 11)

Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
DH
Xem chi tiết
AP
Xem chi tiết
DQ
Xem chi tiết
VQ
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
DS
Xem chi tiết
DS
Xem chi tiết