Những câu hỏi liên quan
PB
Xem chi tiết
CT
6 tháng 8 2018 lúc 4:23

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 22:50

Hàm số ở câu a) \(y = 9{x^2} + 5x + 4\) là hàm số bậc hai với \(a = 9,b = 5,c = 4\)

Hàm số ở câu b), c) không phải là hàm số bậc hai vì chứa \({x^3}\)

Hàm số ở câu d) \(y = 5{x^2} + \sqrt x  + 2\) không phải là hàm số bậc hai vì chứa \(\sqrt x \)

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 9 2023 lúc 22:03

1) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

2) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1\left(x+9\right)}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-6}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(1\right)=\dfrac{-6}{\left(1+3\right)^2}+\dfrac{2}{\sqrt[]{1}}=-\dfrac{3}{8}+2=\dfrac{13}{8}\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Bình luận (0)
NT
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 8 2018 lúc 8:31

Ta có 

Bảng biến thiên của hàm số y= g( x)

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.

Bình luận (0)
AP
Xem chi tiết
AH
8 tháng 10 2021 lúc 7:52

Ở góc trái khung soạn thảo có hỗ trợ viết công thức toán (biểu tượng $\sum$). Bạn viết lại đề bằng cách này để được hỗ trợ tốt hơn.

 

Bình luận (0)
LN
Xem chi tiết
NM
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
KL
14 tháng 1 2022 lúc 9:46

Bài 8:

a) f(-1) = (-1) - 2 = -3

f(0) = 0 - 2 = -2

b) f(x) = 3

\(\Rightarrow x-2=3\)

\(x=3+2\)

\(x=5\)

Vậy \(x=5\) thì f(x) = 3

c) Thay tọa độ điểm A(1; 0) vào hàm số, ta có:

VT = 0; VP = 1 - 2 = -1

\(\Rightarrow VT\ne VP\)

\(\Rightarrow\) Điểm A(1; 0) không thuộc đồ thị của hàm số đã cho

Thay tọa độ điểm B(-1; -3) vào hàm số, ta có:

VT = -3; VP = -1 - 2 = -3

\(\Rightarrow VT=VP=-3\)

\(\Rightarrow\) Điểm B(-1; -3) thuộc đồ thị hàm số đã cho

Thay tọa độ điểm C(3; -1) vào hàm số, ta có:

VT = -1; VP = 3 - 2 = 1

\(\Rightarrow VT\ne VP\)

\(\Rightarrow\) Điểm C(3; -1) không thuộc đồ thị hàm số đã cho.

Bình luận (2)
CT
14 tháng 1 2022 lúc 9:50

Bài 8:

a. y = f(x) = -1- 2= -3

    y = f(x) = 0-2= -2

b. cho y = f(x)= 3

ta có: 3=x-2   => x-2=3 

                              x= 3+2 

                              x= 5

c. điểm B

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 1 2017 lúc 7:47

Bình luận (0)
NV
Xem chi tiết