Với các số thực dương x, y. Ta có 8 x , 4 x , 2 theo thứ tự lập thành một cấp số nhân và các số log 2 45 , log 2 y , log 2 x theo thứ tự lập thành cấp số cộng. Khi đó y bằng:
A. 225
B. 15
C. 105
D. 105
Chứng minh rằng với mọi số thực dương x, y ta có: \(x\sqrt{y}+y\sqrt{x}\le x\sqrt{x}+y\sqrt{y}\)
Có:
\(x\sqrt{x}+y\sqrt{y}-x\sqrt{y}-y\sqrt{x}\ge0\)
\(x\left(\sqrt{x}-\sqrt{y}\right)-y\left(\sqrt{x}-\sqrt{y}\right)\ge0\)
\(\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)\ge0\) (luôn đúng)
Dấu = xảy ra khi x=y
cho x,y là các số thực dương phân biệt thỏa mãn
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
Giả sử : \(y=ax\)
Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)
\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)
\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)
Tới đây bạn giải ra , tìm a rồi thay vào y = ax là ra :)
CMR với mọi số thực dương x,y ta luôn có BĐT
\(\dfrac{x^2}{y}+\dfrac{y^2}{x}+\sqrt{xy}\ge3\sqrt{\dfrac{x^2+y^2}{2}}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^2}{y}+\frac{y^2}{x}+\sqrt{xy}=\frac{x^3+y^3}{2xy}+\frac{x^3+y^3}{2xy}+\sqrt{xy}\geq 3\sqrt[3]{\frac{(x^3+y^3)^2}{4xy\sqrt{xy}}}\)
Bằng BĐT AM-GM, dễ thấy:
\(x^3+y^3\geq \frac{1}{2}(x+y)(x^2+y^2)\geq \sqrt{xy}(x^2+y^2)\)
\(\Rightarrow (x^3+y^3)^2\geq xy(x^2+y^2)^2=xy\sqrt{x^2+y^2}.\sqrt{(x^2+y^2)^3}\geq xy\sqrt{2xy}\sqrt{(x^2+y^2)^3}\)
\(\Rightarrow \frac{x^2}{y}+\frac{y^2}{x}+\sqrt{xy}\geq 3\sqrt[3]{\frac{\sqrt{2}(x^2+y^2)^{\frac{3}{2}}}{4}}=3\sqrt{\frac{x^2+y^2}{2}}\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y$
Tìm giá trị nhỏ nhất của biểu thức P = 4x + y + 3; với x,y là các số thực dương thỏa mãn x + y + xy ≥ 8
\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)
\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)
Chứng minh rằng với mọi số thực x,y dương, ta có bất dẳng thức:
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Ta có:
\(\frac{1}{x+y}\) \(\le\)\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\))
=> \(\frac{1}{x+y}\)\(\le\)\(\frac{x+y}{4xy}\)
=> 4xy \(\le\)(x+y)2
=> 2xy \(\le\)x2+y2
x^2 +y ^2-2xy luôn lớn hơn hoặc bằng 0 nhé! Vội quá, không giải nữa nha!
Với các số thực dương x, y. Ta có 8 x , 4 4 , 2 theo thứ tự lập thành một cấp số nhân và các số log 2 45 , log 2 y , log 2 x theo thứ tự lập thành cấp số cộng. Khi đó y bằng:
A. 225.
B. 15.
C. 105.
D. 150
Cho \(x,y,z\) là các số thực dương thỏa mãn : \(x+y+z=1\) . CMR :
\(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Đặt : \(a=2^x;b=2^y;c=2^z\)
Khi đó : \(a,b,c>0;abc=2^{x+y+z}=64\)
Ta cần c/m : \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^3+32-6a^2=\left(a-4\right)^2\left(a+2\right)\)
Theo đó, ta cần sử dụng giả thiết : \(a>0\), suy ra : \(a^3+32\ge6a^2\)
Thiết lập các bđt tương tự cho b và c và cộng theo vế các bđt tìm được, ta có :
\(a^3+b^3+c^3+96\ge6\left(a^2+b^2+c^2\right)\)
Ta cần c/m thêm : \(6\left(a^2+b^2+c^2\right)\ge4\left(a^2+b^2+c^2\right)+96\)
hay : \(2\left(a^2+b^2+c^2\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{4096}=96\)
\(\Rightarrowđpcm\)
mik làm cách khác,mấy bạn cho điểm nhá!
Sai đề:x+y+z=6
Đặt\(a=2^x,b=2^y,c=2^z\)
\(\Rightarrow abc=2^{x+y+z}=64\)
Áp dụng bất đẳng thức AM-GM,ta được:
\(3\sqrt[3]{abc}\le a+b+c\)
Ta có:\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Hay \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Thật vậy:
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(a^3+a^3+b^3\ge3a^2b\)
\(a^3+a^3+c^3\ge3a^2c\)
\(a^3+b^3+b^3\ge3b^2a\)
\(a^3+c^3+c^3\ge3c^2a\)
\(b^3+b^3+c^3\ge3b^2c\)
\(b^3+c^3+c^3\ge3c^2b\)
Cộng vế theo vế của các bất đẳng thức,ta được:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Dấu "="xẩy ra khi và chỉ khi:\(a=b=c\)
ioi chưa xét dấu = xảy ra khi nào kìa!
1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)
2. Cho các số thực dương x, y, z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{\text{2x^2}+y^2+z^2}{4-yz}+\frac{\text{2y^2}+z^2+x^2}{4-zx}+\frac{\text{2z^2}+x^2+y^2}{4-xy}\)\(\ge\)4xyz
Áp dụng bất đẳng thức AM - GM cho các bộ bốn số không âm, ta được: \(LHS=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\)\(=\frac{x^2+x^2+y^2+z^2}{4-yz}+\frac{y^2+y^2+z^2+x^2}{4-zx}+\frac{z^2+z^2+x^2+y^2}{4-xy}\)\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\)
Như vậy, ta cần chứng minh: \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{zx}}{zx\left(4-zx\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Theo bất đẳng thức Cauchy-Schwarz, ta có: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)\rightarrow\left(a;b;c\right)\). Khi đó \(\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)
và ta cần chứng minh \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge1\)
Xét BĐT phụ: \(\frac{x}{x^2\left(4-x^2\right)}\ge-\frac{1}{9}x+\frac{4}{9}\left(0< x\le1\right)\)(*)
Ta có: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(x^2-2x-9\right)}{9x\left(x-2\right)\left(x+2\right)}\ge0\)(Đúng với mọi \(x\in(0;1]\))
Áp dụng, ta được: \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge-\frac{1}{9}\left(a+b+c\right)+\frac{4}{9}.3\)
\(\ge-\frac{1}{9}.3+\frac{4}{3}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)
Chứng minh:
Ta có 2a2+b2+c2=(a2+b2)+(a2+c2)
Áp dụng bđt cauchy ta có
(a2+b2)+(a2+c2)\(\ge\)2ab+2ac=2a(b+c)
Đặt vế trái của bất đẳng thức là \(K\)
Với x, y, z > 0, ta có: \(yz\le\frac{\left(y+z\right)^2}{4}< \frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\Rightarrow4-yz>0\)
Tương tự ta cũng có \(4-zx>0,4-xy>0\)
Ta viết lại bất đẳng thức cần chứng minh thành \(\frac{x^2+y^2+x^2+z^2}{xyz\left(4-yz\right)}+\frac{x^2+y^2+y^2+z^2}{xyz\left(4-zx\right)}+\frac{z^2+y^2+x^2+z^2}{xyz\left(4-xy\right)}\ge4\)
Áp dụng bất đẳng thức Cauchy ta có \(K\ge\frac{2xy+2xz}{xyz\left(4-yz\right)}+\frac{2xy+2yz}{xyz\left(4-zx\right)}+\frac{2xz+2yz}{xyz\left(4-xy\right)}\)\(=2\left[\frac{y+z}{yz\left(4-yz\right)}+\frac{z+x}{zx\left(4-zx\right)}+\frac{x+y}{xy\left(4-xy\right)}\right]\)\(=2\left[\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\right]+\) \(2\left[\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\right]\)
Lại áp dụng bất đẳng thức Cauchy cho các bộ ba số dương, ta có\(\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)
\(\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)
Do đó \(K\ge\frac{12}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}=\frac{12\sqrt[3]{3}}{\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)
Mặt khác ta lại có: \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le\left(\frac{3xyz+12-xy-yz-zx}{4}\right)^4\)
Ta có bất đẳng thức quen thuộc \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\Leftrightarrow\frac{xy+yz+zx}{xyz}\ge3\)\(\Leftrightarrow3xyz-xy-yz-zx\le0\)
Suy ra \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le3^4=81\) \(\Rightarrow\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}\le3\sqrt[3]{3}\)
Do đó \(K\ge\frac{12\sqrt[3]{3}}{3\sqrt[3]{3}}=4\)
Như vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1
Cho các số thực dương x, y thỏa mãn x + y = √xy (x − y). Chứng minh rằng x + y ≥ 4