Cho a và b là hai số thực thỏa mãn 3 a = 81 b + 2 v à 125 b = 5 a - 3 . Tính giá trị của ab
A. -60
B. -17
C. 12
D. 60
Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 . Tính b - 5 a
Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 Tính b – 5 a
A. 10
B. -2
C. 15
D. 8
Cho các số thực a, b, thỏa mãn a - b = 2 . Khẳng định nào sau đây là đúng?
Tích của hai số a và b:
A. có giá trị nhỏ nhất là -1
B. có giá trị lớn nhất là -1
C. có giá trị nhỏ nhất khi a = b
D. không có giá trị nhỏ nhất
Ta có: a – b = 2 nên a= b +2.
Khi đó; tích a b = b + 2 . b = b 2 + 2 b = b 2 + 2 b + 1 - 1 = b + 1 2 - 1 ≥ - 1 ∀ b
Vậy tích ab nhỏ nhất là -1 khi b = -1 ; a= 1
cho a,b là hai số thực thỏa mãn a^2+b^2=a+b+ab. Tìm GTLN của M= a^3+b^3+2000
Cho a và b là hai số thực phân biệt thỏa mãn \(a^4-4a=b^4-4b\). Chứng minh rằng 0<a+b<2
Lời giải:
$a^4-4a=b^4-4b$
$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$
$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$
$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$
$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)
$\Rightarrow (a+b)(a^2+b^2)=4>0$
Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$
Mặt khác:
Áp dụng BĐT AM-GM:
$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$
$\Rightarrow 8> (a+b)^3$
$\Rightarrow 2> a+b$
Vậy $0< a+b< 2$
Ta có đpcm.
Cho a, b là hai số thực thỏa mãn a3 - 3ab^2=19
b^3-3a^2b=98
tìm a^2+b^2
giúp mk nha
thôi mk tự lm đc rồi:
(a^3- 3ab^2)^2=361
=a^6- 6a^4b^2+ 9a^2 b^4
(b^3-3a^2b)^2=9604
=b^6- 6a^2b^4+9a^4 b^2
cộng 2 vế->(a^2+b^2)^3= 9604+361= 9965
mn check hộ mk nha
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Helpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Help :(((((((((((((((((((((((((
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)