Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
3 tháng 4 2019 lúc 3:09

Chọn  D.

Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 12 2018 lúc 7:00

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 12 2019 lúc 2:25

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2018 lúc 7:02

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 6 2017 lúc 11:27

Đáp án C.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 11 2017 lúc 14:35

Bình luận (0)
NA
Xem chi tiết
H24
7 tháng 4 2023 lúc 12:44

\(z^2-2\left(2m-1\right)z+m^2=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

Ta có :

\(z^2_1+z_2^2=2\)

\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)

\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)

\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)

\(\Leftrightarrow14m^2-16m+2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)

Bình luận (0)
NH
10 tháng 4 2023 lúc 16:43

Ta có phương trình bậc hai trên tập số phức:

z^2 - 2(2m-1)z + m^2 = 0

Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:

z1 + z2 = 2(2m-1) và z1z2 = m^2

Từ phương trình z1^2 + z2^2 = 2, ta suy ra:

(z1+z2)^2 - 2z1z2 = 4

Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:

(2(2m-1))^2 - 2m^2 = 4

Đơn giản hóa biểu thức ta có:

m^2 - 4m + 1 = 0

Suy ra:

m = 2 + √3 hoặc m = 2 - √3

Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.

Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2018 lúc 18:27

Chọn A.

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 6 2018 lúc 9:40

Chọn A.


Bình luận (0)