Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trên tập hợp số phức, cho phương trình z 2 + bz + c = 0 với b,c ∈ ℚ Biết rằng hai nghiệm của phương trình có dạng w + 3 và 2w – 6i +1 với w là một số phức. Tính S = b 3 - c 2 .
A. S = -1841.
B. S = -3.
C. S = 7.
D. S = 2161.
Gọi S là tập hợp các số nguyên m sao cho tồn tại 2 số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập nghiệm của phương trình 2 2 x - 1 - 5 . 2 x - 1 + 3 = 0 . Tìm S.
A. S = 1 ; log 2 3
B. S = 0 ; log 2 3
C. S = 1 ; log 3 2
D. S = {1}
Gọi S là tập nghiệm của phương trình log 5 ( x + 1 ) + log 5 ( x - 3 ) = 1 Tìm S
A. S = - 2 ; 4
B. S = - 1 + 13 2 ; - 1 - 13 2
C. S = 4
D. S = - 1 + 13 2
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Xét phương trình z 3 = 1 trên tập số phức. Tập nghiệm của phương trình là
A. S = 1 ; - 1 ± 3 2
B. S = 1 ; - 1 ± 3 i 2
C. S = - 1 ± 3 i 2
D. S = {1}
S là tập hợp tất cả các giá trị thực của tham số a thỏa mãn mỗi nghiệm của bất phương trình log x ( 5 x 2 - 8 x + 3 ) > 2 đều là nghiệm của bất phương trình x 2 - 2 x - a 4 + 1 ≥ 0 . Khi đó:
A. S = - 10 5 ; 10 5 .
B. S = - ∞ ; - 10 5 ∪ 10 5 ; + ∞
C. S = - 10 5 ; 10 5 .
D. S = - ∞ ; - 10 5 ∪ 10 5 ; + ∞ .
Tập nghiệm S của bất phương trình log 2 x - 1 < 3 là
A. S = ( 1 ; 9 )
B. - ∞ ; 10
C. S = ( - ∞ ; 9 )
D. S = ( 1 ; 10 )