Tính nhanh: S= \(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}-5\)
bài 1 : tính phân số:
a) \(\frac{5}{7}+\frac{4}{9}=?;\frac{4}{5}-\frac{2}{3}=?;\frac{9}{11}+\frac{3}{8}=?;\frac{16}{25}-\frac{2}{5}=?\)=?
b)\(5+\frac{3}{5}=?;10-\frac{9}{16}=?;\frac{2}{3}-\left(\frac{1}{6}+\frac{1}{8}\right)=?\)
c)\(\frac{5}{7}+\frac{7}{6}=?;\frac{7}{12}+\frac{17}{18}=?;\frac{9}{8}+\frac{15}{32}=?;4+\frac{35}{45}=?\)
d)\(\frac{11}{4}-\frac{15}{16}=?;\frac{5}{6}-\frac{5}{8}=?;\frac{196}{64}-2=?;3-\frac{13}{9}=?\)
e)\(\frac{8}{5}+\frac{7}{6}+\frac{5}{9}-2=?;3-\frac{5}{6}-\frac{4}{9}+\frac{32}{24}=?\)
a)\(\dfrac{5}{7}+\dfrac{4}{9}=\dfrac{45}{63}+\dfrac{28}{63}=\dfrac{73}{63}\) ; \(\dfrac{9}{11}+\dfrac{3}{8}=\dfrac{72}{88}+\dfrac{33}{88}=\dfrac{105}{88}\)
\(\dfrac{4}{5}-\dfrac{2}{3}=\dfrac{12}{15}-\dfrac{10}{15}=\dfrac{2}{15}\); \(\dfrac{16}{25}-\dfrac{2}{5}=\dfrac{16}{25}-\dfrac{10}{25}=\dfrac{6}{25}\)
Tính nhanh
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{264}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
tính(không quy đồng)
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)+\left(1+\frac{1}{16}\right)+\left(1+\frac{1}{32}\right)+\left(1+\frac{1}{64}\right)-7\)
\(S=\left(1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-7\)
\(S=6+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+....+\left(\frac{1}{32}-\frac{1}{64}\right)\right]-7\)
\(S=6+\left(1-\frac{1}{64}\right)-7\)
\(S=6+\frac{63}{64}-7\)
\(S=\frac{447}{64}-7=-\frac{1}{64}\)
s=1,5+1,25+1,125+1,0625+1,03125+1,015625-7=-0,015625
Tính:
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)
\(S=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-1\)
\(S+1=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(2\left(S+1\right)=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
\(2\left(S+1\right)-\left(S+1\right)=S+1=1-\frac{1}{2^6}=\frac{63}{64}\)
\(S=\frac{63}{64}-1\)
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{264}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
tinh nhanh neu co the
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}\cdot\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{264}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{2\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}\cdot\frac{\frac{3}{4}\left(1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}\right)}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}\)\(+\frac{5}{8}\)
\(\frac{1}{2}\cdot\frac{3}{4}+\frac{5}{8}=\frac{3}{8}+\frac{5}{8}=1\)
Tính
S= \(\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
Tính nhanh
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{264}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
Câu hỏi của Quỳnh Như - Toán lớp 7 | Học trực tuyến
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)
Tính nhah ---- giúp mik giải nâ các bn thank nhiều nhiều
a)\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}+\frac{1}{3}\)
b) \(\frac{\frac{1}{3}-\frac{1}{5}-\frac{1}{7}}{\frac{2}{3}-0,4-\frac{2}{7}}+\frac{\frac{3}{8}-\frac{3}{16}-\frac{3}{32}+\frac{3}{64}}{\frac{1}{4}-\frac{1}{8}-\frac{1}{16}+\frac{1}{32}}\)
c) \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
Tính nhanh:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}\)
\(=\frac{126}{128}=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
\(A=1-\frac{1}{64}=\frac{63}{64}\)