Những câu hỏi liên quan
LA
Xem chi tiết
PT
10 tháng 4 2018 lúc 20:28

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

Bình luận (0)
LG
10 tháng 4 2018 lúc 20:26

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

Bình luận (0)
HH
Xem chi tiết
LD
5 tháng 7 2022 lúc 23:41

 

.

 

Bình luận (0)
LD
5 tháng 7 2022 lúc 23:52

undefined

Bình luận (0)
HM
Xem chi tiết
AH
30 tháng 7 2021 lúc 11:09

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

Bình luận (0)
NA
Xem chi tiết
VK
23 tháng 4 2016 lúc 14:37

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

Bình luận (0)
HM
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 7 2017 lúc 8:35

Bình luận (0)
TN
Xem chi tiết
AH
13 tháng 12 2016 lúc 22:46

a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$

b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt

$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt

$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$

Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$

Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$

c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$

$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$

$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$

$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

 

Bình luận (4)
TH
16 tháng 2 2022 lúc 9:00

\(_x1\) x 9\(\sqrt[]{c}12\) = 7

Mik làm phép tính như thế vì bạn đăng "cức đại" trên câu hỏi

Bình luận (0)
TH
18 tháng 2 2022 lúc 9:23

+ P x 72,u2 + (-n8 ) = \(83 + (((((62\) =\(\beta23A\)

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 11 2018 lúc 8:00

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 1 2019 lúc 2:39

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

Bình luận (0)