Cho ABCD.A′B′C′D′ là hình lập phương cạnh 2a. Tính thể tích khối tứ diện ACD′B′ là
A. 8 a 3 3
B. 4 a 3 3
C. 2 a 3 3
D. 8 a 3 9
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có A B = a , A A ' = 2 a . Biết thể tích hình cầu ngoại tiếp tứ diện ABCD′ là 9 π 2 a 3 . Tính thể tích V của hình chữ nhật ABCD.A′B′C′D′.
A. 4 a 3
B. 4 a 3 3
C. 2 a 3
D. 2 a 3 3
Cho hình lập phương ABCD.A′B′C′D′ABCD.A′B′C′D′ cạnh aa và một điểm MM trên cạnh AB,AM=x,0<x<aAB,AM=x,0<x<a. Xét mặt phẳng (PP) đi qua điểm MM và chưa đường chéo A′C′A′C′ của hình vuông A′B′C′D′.A′B′C′D′.
1.1. Tính diện tích của thiết diện của hình lập phương cắt bởi mặt phẳng (PP).
2.2. Mặt phẳng (PP) chia hình lập phương thành hai khối đã diện. Hãy tìm xx để thể tích của một trong hai khối đa diện đó gấp đôi thể tích của khối đa diện kia.
Cho ABCD.A’B’C’D’ là hình lập phương cạnh 2a. Tính thể tích khối tứ diện ACD’B’ là
A. 4 a 3 3
B. 8 a 3 3
C. 2 a 3 3
D. 8 a 3 9
Đáp án B
Nhận thấy chóp ACD’B’ có tất cả các cạnh bằng nhau và bằng 2 2 a
Gọi M là trung điểm của AC, G là trọng tâm của tam giác AB’C’. Chóp ACD’B’ nhận D’G là đường cao.
Xét tam giác AB’C’ có
Xét tam giác vuông D’GB’ ta có
Cho ABCD.A’B’C’D’ là hình lập phương cạnh 2a. Tính thể tích khối tứ diện ACD’B’ là
Chọn B
Nhận thấy chóp ACD’B’ có tất cả các cạnh bằng nhau và bằng 2 2 a
Gọi M là trung điểm của AC, G là trọng tâm của tam giác AB’C’. Chóp ACD’B’ nhận D’G là đường cao.
Xét tam giác AB’C’ có
Xét tam giác vuông D’GB’ ta có
Cho hình lập phương ABCD.A' B' C' D' có A'C = 3 a 3 . Thể tích của khối lập phương ABCD.A' B' C' D' là
A. 9 a 3 3
B. 27 a 3
C. 3 a 3
D. a 3
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khối nón đỉnh A, đáy là đường tròn đi qua ba điểm A′BD có thể tích bằng
A. 2 3 πa 3 27
B. 3 πa 3 8
C. 3 a 3 27
D. πa 3 6
Hình hộp đứng ABCD.A′B′C′D′ có đáy là hình thoi. Diện tích các tứ giác ABCD,ACC′A′,BDD′B′ lần lượt là S 1 , S 2 , S 3 . Khi đó thể tích khối hộp ABCD.A′B′C′D′ là
A. 1 3 S 1 S 2 S 3
B. 1 2 S 1 S 2 S 3
C. 1 3 S 1 S 2 S 3
D. 1 2 S 1 S 2 S 3
Cho hình lập phương có cạnh a. Gọi M là trung điểm A', B', N' là trung điểm Tính thể tích của khối tứ diện ADMN
Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vương, cạnh đáy bằng \(2a\sqrt{2}\) và đường chéo AC'=5a. Tính thể tích khối lăng trụ đã cho
A. \(24a^3\) B. \(8a^3\) C.\(17\sqrt{2}a^3\) D.\(4a^3\)
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)