Tìm các giá trị nguyên của x để phân thức M có giá trị một số nguyên: M = 10 x 2 - 7 x - 5 2 x - 3
Tìm các giá trị nguyên của x để phân thức M có giá trị là 1 số nguyên:
\(M=\frac{10\cdot x^2-7\cdot x-5}{2\cdot x-3}\)
Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên
\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }
Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)
2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)
2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)
2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)
Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên
Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên:
M = \(\dfrac{10x^2-7x-5}{2x-3}\)
`M=(10x^2-7x-5)/(2x-3)(x ne 3/2)`
`=(10x^2-15x+8x-12+7)/(2x-3)`
`=(5x(2x-3)+4(2x-3)+7)/(2x-3)`
`=5x+4+7/(2x-3)`
Để `M in ZZ`
`=>7/(2x-3) in ZZ`
`=>2x-3 in Ư(7)={+-1,+-7}`
`=>2x in {2,4,-4,10}`
`=>x in {1,2,-2,5}(tm)`
Vậy `x in {1,2,-2,5}` thì `M in ZZ`.
Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên
M=\(\frac{10x^2-7x-5}{2x-3}\)
\(\text{Để }\frac{10x^2-7x-5}{2x-3}nguyên\Rightarrow\left(10x^2-7x-5\right)⋮\left(2x-3\right)\)
\(\text{Ta có }10x^2-7x-5=10x^2-7x-12+7=\left(2x-3\right)\left(5x+4\right)+7\)\(Mà\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)\Rightarrow7⋮\left(2x-3\right)\)
\(\Rightarrow\left(2x-3\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
2x-3 | -7 | -1 | 1 | 7 |
x | -2 | 1 | 2 | 5 |
\(\text{Vậy x }\in\left\{-2;1;2;5\right\}\)
Cho biểu thức
M=căn x +1/2
A)Tìm các giá trị nguyên của x để M nhận giá trị nguyên
B)Tìm giá trị lớn nhất của biểu thức M
c)Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Tìm các giá trị nguyên của biến để phân thức sau có giá trị 3/x+1
Tìm các giá trị nguyên của biến để phân thức sau có giá trị 6/x-3
x nguyên,x khác -1
x nguyên,x khác 3
tik mik nha
để phân thức có giá trị thì x+1 khác 0
suy ra x khác -1 mà x nguyên
nên......
cái kia làm tương tự nha
tik mik nha
a: Để \(\dfrac{3}{x+1}\) là số nguyên thì \(3⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-1;2;-4\right\}\)
Tìm giá trị nguyên của x để phân thức 3 x + 2 có giá trị là một số nguyên?
A. x = -3
B. x Î {-1; 1}
C. x Î {-1; 1; -5; -3}
D. x = -1
Tìm các giá trị nguyên của x để phân thức a có giá trị là số nguyên:
A= x^3-4x^2+4x-10/x-3
Giúp mk nha!
\(A=\frac{x^3-4x^2+4x-10}{x-3}\)( ĐKXĐ : x ≠ 3 )
\(=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)
\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)}{x-3}-\frac{7}{x-3}\)
\(=\left(x^2-x+1\right)-\frac{7}{x-3}\)
Vì x ∈ Z nên ( x2 - x + 1 ) ∈ Z
nên để A ∈ Z thì \(\frac{7}{x-3}\)∈ Z
hay ( x - 3 ) ∈ Ư(7) = { ±1 ; ±7 }
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
Các giá trị tm ĐKXĐ
Vậy x ∈ { ±4 ; 2 ; 10 } thì A ∈ Z
\(ĐKXĐ:x\ne3\)
\(A=\frac{x^3-4x^2+4x-10}{x-3}=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)
\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}=\left(x^2-x+1\right)-\frac{7}{x-3}\)
Vì \(x\inℤ\)\(\Rightarrow x^2-x+1\inℤ\)
\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x-3}\inℤ\)\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-4;2;4;10\right\}\)( thỏa mãn ĐKXĐ )
Vậy \(x\in\left\{-4;2;4;10\right\}\)
Bai 1 :Tìm giá trị của m để f (x) = x^3 + x2-11x + m
bai 2 :cho phân thức A = x^2 + 2x +1 x^2 – x – 2
a. Tìm điều kiện của x để biểu thức A xác định
b. Rút gọn biểu thức a
c. Tìm các giá trị nguyên của x để A có giả trị nguyên
a) Tìm các giá trị nguyên của \(x\) để biểu thức M=\(\dfrac{8x+1}{4x-1}\)nhận giá trị nguyên
b) Tìm giá trị nguyên của biến \(x\) để biểu thức \(A=\dfrac{5}{4-x}\)có giá trị lớn nhất
c) Tìm giá trị nguyên của biến \(x\) để biểu thức \(B=\dfrac{8-x}{x-3}\)có giá trị nhỏ nhất
(Hơi khó mọi người giúp mình với ạ)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)
\(\Leftrightarrow8x-2+3⋮4x-1\)
mà \(8x-2⋮4x-1\)
nên \(3⋮4x-1\)
\(\Leftrightarrow4x-1\inƯ\left(3\right)\)
\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
Vậy: \(x\in\left\{0;1\right\}\)