Những câu hỏi liên quan
QL
Xem chi tiết
HM
16 tháng 9 2023 lúc 16:48

a) Ta có:

\( - \frac{1}{3} = \frac{{ - 5}}{{15}};\frac{{ - 2}}{5} = \frac{{ - 6}}{{15}}\)

Vì -5 > -6 nên \(\frac{{ - 5}}{{15}} > \frac{{ - 6}}{{15}}\) hay \( - \frac{1}{3}\) > \(\frac{{ - 2}}{5}\)

b) 0,125 < 0,13 vì chữ số hàng phần trăm của 0,125 là 2 nhỏ hơn chữ số hàng phần trăm của 0,13 là 3

c) Ta có:

\(\begin{array}{l} - 0,6 = \frac{{ - 6}}{{10}} = \frac{{ - 3}}{5} = \frac{{ - 9}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 10}}{{15}}\end{array}\)

Vì -9 > -10 nên \(\frac{{ - 9}}{{15}} > \frac{{ - 10}}{{15}}\) hay - 0,6 > \(\frac{{ - 2}}{3}\)

Bình luận (0)
MN
Xem chi tiết
KS
14 tháng 5 2022 lúc 9:06

`3^(2 + n) và 2^(3 + n) `

`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`

`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`

ta thấy `9>8   ; 3^n > 2^n `

vậy `3^(2 + n) > 2^(3 + n) `

Bình luận (0)
TC
14 tháng 5 2022 lúc 12:43

\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)

ta có 

\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)

\(=>3^{2+n}>2^{3+n}\)

Bình luận (0)
NA
Xem chi tiết
NP
18 tháng 4 2022 lúc 7:21

A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60

Bình luận (0)
PN
22 tháng 3 2024 lúc 10:42

Ta có: �=12+122+123+124+...+122021+122022

⇒2�=1+12+122+123+...+122020+122021

Bình luận (0)
IT
Xem chi tiết
H24
Xem chi tiết
NT
4 tháng 7 2021 lúc 11:55

a) \(\left(-\dfrac{1}{3}\sqrt{63}\right)^2=\dfrac{1}{9}\cdot63=7\)

\(\left(-2\sqrt{2}\right)^2=8\)

mà 7<8

nên \(-\dfrac{1}{3}\sqrt{63}>-2\sqrt{2}\)

b) Ta có: \(\left(2\sqrt{55}\right)^2=4\cdot55=220\)

\(\left(\dfrac{3}{5}\sqrt{750}\right)=\dfrac{9}{25}\cdot750=270\)

mà 220<270

nên \(2\sqrt{55}< \dfrac{3}{5}\sqrt{750}\)

hay \(-2\sqrt{55}< -\dfrac{3}{5}\sqrt{750}\)

Bình luận (0)
TB
Xem chi tiết
NT
24 tháng 1 2022 lúc 20:06

Bài 1

a: 11/12=1-1/12

23/24=1-1/24

mà -1/12>-1/24

nên 11/12>23/24

b: -3/20=-9/60

-7/12=-35/60

mà -9>-35

nên -3/20>-7/12

Bình luận (0)
QL
Xem chi tiết
HM
27 tháng 9 2023 lúc 21:38

a) Sử dụng máy tính cầm tay, ta có:

\(\left. \begin{array}{l}C_6^2 = 15\\C_6^4 = 15\end{array} \right\} \Rightarrow C_6^2 = C_6^4\)

b) Sử dụng máy tính cầm tay, ta có:

\(\left. \begin{array}{l}C_4^2 + C_4^3 = 6 + 4 = 10\\C_5^3 = 10\end{array} \right\} \Rightarrow C_4^2 + C_4^3 = C_5^3\)

Bình luận (0)
NA
Xem chi tiết
HG
3 tháng 3 2017 lúc 21:05

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)

Có \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......

\(\frac{1}{2011^2}< \frac{1}{2010.2011}\)

=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2010.2011}\)

=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2010}-\frac{1}{2011}\)

=> \(A< 1-\frac{1}{2011}< 1\)

=> A < 1

=> A < B

Bình luận (0)
ZH
Xem chi tiết
NT
22 tháng 12 2021 lúc 12:34

a: \(2^{333}=8^{111}< 9^{111}=3^{222}\)

Bình luận (0)
RP
Xem chi tiết
NT
7 tháng 4 2021 lúc 20:25

a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)

\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)

mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)

nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)

Bình luận (0)
DT
7 tháng 4 2021 lúc 21:13

\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)

\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)

\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)

\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)

Bình luận (0)
DT
7 tháng 4 2021 lúc 21:04

\(\left(\dfrac{1}{80}\right)^7\&\left(\dfrac{1}{243}\right)^6\)

\(\dfrac{1}{80}>\dfrac{1}{81}=\dfrac{1}{3^4}\)

\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{3^4}\right)^7=\dfrac{1}{3^{7.4}}=\dfrac{1}{3^{28}}>\dfrac{1}{3^{30}}\)

\(=\dfrac{1}{\left(3^5\right)^6}=\left(\dfrac{1}{243}\right)^6\)

\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)

Bình luận (0)