Cho f ( x ) = 2 x 3 - x 2 + 3 g ( x ) = x 3 + x 2 2 - 3
Giải bất phương trình f′(x) > g′(x).
Cho các đa thức: f(x 0 = x ^ 3 - 2x ^ 2 + 3x + 1 g(x) = x ^ 3 + x ^ 2 - 5x + 3 a) Tính: f(-1/3), g(-2) b) Tìm x sao cho f(x) - g(x); f(x) + g(x)
f(x)=x^3-2x^2+3x+1
g(x)=x^3+x^2-5x+3
a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27
g(-2)=-8+4+10+3=17-8=9
b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3
=x^2+8x-2
f(x)+g(x)
=x^3-2x^2+3x+1+x^3+x^2-5x+3
=2x^3-x^2-2x+4
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
Cho f(x) xác dịnh với mọi x thuộc R. Tính f(x) biết
a. f(x) + 3. f(1/2) = x2
b. 3. f(x) -2 .f(1-x)= x+3
c. 2. f( x-3)- f( 5-x)= x+2
d. 2. f(2-x) -4. f( x-2) = -2x +1
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Thầy cho em hỏi ạ:
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
Cho f(x)=x^3+ax^2+b Tìm a,b để a)f(x) chia hết cho x^2+x+1 b)f(x) chia cho x^2-1 dư x+3
a: f(x) chia hết cho x^2+x+1
=>\(x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1-ax+b+1⋮x^2+x+1\)
=>-a=0 và b+1=0
=>a=0 và b=-1
b: \(\dfrac{f\left(x\right)}{x^2-1}=\dfrac{x^3-x+ax^2-a+x+b+a}{x^2-1}\)
\(=x+a+\dfrac{x+b+a}{x^2-1}\)
Để f(x) chia x^2-1 dư x+3 thì x+b+a=x+3
=>b+a=3
tìm đa thức f(x) biết rằng f(x) chia cho x-3 dư 2 , f(x) chia cho x+4 dư 9 và f(x) chia cho x^2+x-12 được thương là x^2+3 và còn dư
f(x)= (x-3). Q(x)+2 moi X
f(x)=(x+4).H(x)+9 moi X
=>f(3)= 2
f( -4)= 9
f(x)= (x^2+x-12).(x^2+3)+ ax +b
=(x-3)(x+4). (x^2+3) +ax+b
=>f(3)= 3a+b=2
f(-4)=b -4a=9
=>a= -1; b=5
=> f(x)=(x^2+x-12)(x^2+3)-x+5
= x^4+x^3-9x^2+2x-31
Ta thấy :
x2 +x -12 = x2 +4x - 3x-12
= x(x+4) - 3(x+4)
= (x-3)(x+4)
Vì :
f(x) chia (x-1)(x+4) được x2 + 3 và còn dư
Mà số dư có bậc không vượt quá 1
=> f(x) = (x-3)(x+4)(x2 + 3) +ax +b
Ta có :
f(x) chia (x-3) dư 2
=> f(3)=2
=> 3a+b=2
f(x) chia (x+4) dư 9
=> f(-4)=9
=> b-4a=9
=> 3a+b-b+4a = 2-9
7a = -7
=> a= -1
=> -3 + b =2
b=5
Vậy đa thức f(x) = (x-3)(x+4)(x2 + 3) - x + 5
cho các hàm số
a, y=f(x)= 3x^2+x+1
tính f(1) f(-1\3) f(2\3) f(-2) f(-4\3)
b, y=f(x)= |2x-9|-3
tính f(2\3) f(-5\4) f(-5) f(4) f(-3\8)
c, y=2x^2-7 lập bảng các 9 trị tương ứng của y khi
x=0 x=-3 x= -1\2 x=2\3
\(a,f\left(1\right)=3\cdot1^2+1+1=5\\ f\left(-\dfrac{1}{3}\right)=3\cdot\left(-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+1=\dfrac{1}{3}-\dfrac{1}{3}+1=1\\ f\left(\dfrac{2}{3}\right)=3\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{3}+1=\dfrac{4}{3}-\dfrac{2}{3}+1=\dfrac{5}{3}\\ f\left(-2\right)=3\cdot\left(-2\right)^2-2+1=11\\ f\left(-\dfrac{4}{3}\right)=3\cdot\left(-\dfrac{4}{3}\right)^2-\dfrac{4}{3}+1=\dfrac{16}{3}-\dfrac{4}{3}+1=5\)
\(b,f\left(\dfrac{2}{3}\right)=\left|2\cdot\dfrac{2}{3}-9\right|-3=\dfrac{23}{3}-3=\dfrac{14}{3}\\ f\left(-\dfrac{5}{4}\right)=\left|2\cdot\left(-\dfrac{5}{4}\right)-9\right|-3=\dfrac{23}{2}-3=\dfrac{17}{2}\\ f\left(-5\right)=\left|2\left(-5\right)-9\right|-3=19-3=16\\ f\left(4\right)=\left|2\cdot4-9\right|-3=1-3=-2\\ f\left(-\dfrac{3}{8}\right)=\left|2\cdot\left(-\dfrac{3}{8}\right)-9\right|-3=\dfrac{39}{4}-3=\dfrac{27}{4}\)
\(c,x=0\Rightarrow y=2\cdot0^2-7=-7\\ x=-3\Rightarrow y=2\cdot\left(-3\right)^2-7=11\\ x=-\dfrac{1}{2}\Rightarrow y=2\cdot\left(-\dfrac{1}{2}\right)^2-7=\dfrac{-13}{2}\\ x=\dfrac{2}{3}\Rightarrow y=2\cdot\left(\dfrac{2}{3}\right)^2-7=-\dfrac{55}{9}\)
cho hàm số f(x)=x/2^x. tìm f(1)+f(2)+f(3)+...+f(x)=2^(x+1)-(x/2^x)-1/512
Bài 1. Cho hai đa thức \(f\)(\(x\))= 5\(x\)4+4\(x\)2-2\(x\)+7 và \(g\)(\(x\))=4\(x\)4-2\(x\)3+3\(x\)2+4\(x\)-1
Tính \(f\)(\(x\)) + \(g\)(\(x\)) và \(f\)(\(x\)) - \(f\)(\(x\))
Bài 2. Thực hiện phép nhân.
a) (\(x\) + 3).(\(x\) - 1) b) (4\(x\) + 3).(\(x\)- 2)
c) (2\(x\) + 3).(\(x\) + 1) d) (5\(x\)-2).(\(x\)2- 3\(x\) + 1)
Bài 3. Tính giá trị biểu thức.
a) M=3\(x\)2-2\(x\).(\(x\)-5)+\(x\).(\(x\)-7) tại \(x\)=5
b) J=-3\(x\)2+4\(x\)-5.(\(x\)-2) tại \(x\)=-5
c) N=4\(x\).(2\(x\)-3)-5\(x \).(\(x\)-2) tại\(x\)=1
`1,`
`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`
`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`
`= 9x^4-2x^3+8x^2+2x+6`
Đề phải là `f(x)-g(x)` chứ nhỉ :v?
`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`
`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`
`= x^4+2x^3-6x+x^2+8`
`2,`
`a, (x+3)(x-1)`
`= x(x-1)+3(x-1)`
`= x*x+x*(-1)+3*x+3*(-1)`
`=x^2-x+3x-3`
`= x^2+2x-3`
`b, (4x+3)(x-2)`
`= 4x(x-2)+3(x-2)`
`= 4x*x+4x*(-2)+3*x+3*(-2)`
`= 4x^2-8x+3x-6`
`c, (2x+3)(x+1)`
`= 2x(x+1)+3(x+1)`
`= 2x*x+2x*1+3*x+3*1`
`= 2x^2+2x+3x+3`
`= 2x^2+5x+3`
`d, (5x-2)(x^2-3x+1)`
`= 5x(x^2-3x+1)+(-2)(x^2-3x+1)`
`= 5x*x^2+5x*(-3x)+5x*1+(-2)*x^2+(-2)*(-3x)+(-2)*1`
`= 5x^3-15x^2+5x-2x^2+6x-2`
`= 5x^3-17x^2+11x-2`