Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a và B A D ^ = 60 0 , hợp với đáy (ABCD) một góc 30 0 . Thể tích của khối hộp là
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a và B A D ^ = 60 0 , AB’ hợp với đáy (ABCD) một góc 30 0 . Thể tích của khối hộp là
A. a 3 2 .
B. 3 a 3 2 .
C. a 3 6 .
D. a 3 2 6 .
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a và B D C ⏜ = 60 0 , AB’ hợp với đáy (ABCD) một góc 30 0 . Thể tích của khối hộp là
Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng 2 2 a 3 đáy ABCD là hình thoi cạnh a và B A D ^ = 45 ° . Khoảng cách giữa hai đáy ABCD và A’B’C’D’ của hình hộp bằng
A. 4a
B. 2a
C. 2 2 a
D. 4 2 a
Cho hình hộp ABCD.A’B’C’D’ đáy ABCD là hình thoi cạnh a, góc B A D ^ = 60 ° . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) là điểm H thuộc AB thỏa mãn A H = B H 2 và góc giữa đường thẳng AA’ hợp với mặt phẳng (ABCD) một góc bằng 30 ° . Thể tích khối hộp ABCD.A’B’C’D’ là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, BCD = 120 0 và AA' = 7 a 2 . Hình chiếu vuông góc của A’ lên mặt phẳng ABCD trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
Chọn đáp án B
Gọi O = AC ∩ BD.Từ giả thiết suy ra A'O ⊥ ABCD
Cũng từ giả thiết, suy ra ABC là tam giác đều nên
Đường cao khối hộp
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, B C D ^ = 120 ° và A A ' = 7 a 2 Hình chiếu vuông góc của A lên mặt phẳng ABCD trùng với giao điểm của AC và BD.Tính theo a thể tích khối hộp ABCD.A’B’C’D’:
A. V = 12 a 3
B. V = 3 a 3
C. V = 9 a 3
D. V = 6 a 3
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và B A D ^ = B A A ' ^ = D A A ' ^ = 60 ° . Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
A. a 5 5
B. a 6 3
C. a 10 5
D. a 3 3
+ Gọi O là giao điểm của AC và BD ⇒ O là trung điểm của AC và BD
Ta có: A’B = A’D (đường chéo các hình thoi) ⇒ Tam giác A’BD cân tại A’ có O là trung điểm của BD ⇒ A’O ⊥ BD.
+ Hạ A’H ⊥ AC, H ∈ AC
Ta có B D ⊥ A C B D ⊥ A ' O ⇒ B D ⊥ A O A ' ⇒ A’H ⊥ BD
Do đó: A’H ⊥ (ABCD)
Vì (ABCD) // (A’B’C’D’) nên A’H chính là khoảng cách giữa hai mặt đáy.
+ Tính A’H
Ta có: AC = A D 2 + C D 2 − 2. A D . C D . cos 120 ° = a 3 ⇒ AO = a 3 2
Theo giả thiết ⇒ hình chóp A’.ABD là hình chóp đều, nên ta có:
AH = 2/3 AO = a 3 3
A’H = A ' A 2 − A H 2 = a 2 − a 2 3 = a 6 3
Vậy khoảng cách giữa hai đáy (ABCD) và (A’B’C’D’) là a 6 3 .
Đáp án B
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, B C D ^ = 120 ° , A A ' = 7 2 a . Hình chiếu vuông góc của A’ lên mạt phẳng (ABCD) trung với giao điểm của AC và BD Tính theo a thể tích khối hộp ABCD.A’B’C’D’?
A. 3 a 3
B. 4 a 3 6 3
C. 2 a 3
D. 3 a 3
Cho hình hộp đứng A B C D . A ' B ' C ' D ' có đáy ABCD là hình thoi cạnh a và B A D ^ = 60 ° , AB' hợp với đáy một góc 30 ° . Thể tích của khối hộp là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6