PB

Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và B A D ^ = B A A ' ^ = D A A ' ^ = 60 ° . Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).

A.  a 5 5

B. a 6 3

C. a 10 5

D. a 3 3

CT
1 tháng 1 2018 lúc 12:51

+ Gọi O là giao điểm của AC và BD ⇒  O là trung điểm của AC và BD

Ta có: A’B = A’D (đường chéo các hình thoi) ⇒ Tam giác A’BD cân tại A’ có O là trung điểm của BD ⇒  A’O ⊥  BD.

+ Hạ A’H  ⊥  AC, H ∈  AC

Ta có B D ⊥ A C B D ⊥ A ' O ⇒ B D ⊥ A O A ' ⇒  A’H ⊥  BD

Do đó:  A’H ⊥ (ABCD)

Vì (ABCD) // (A’B’C’D’) nên A’H chính là khoảng cách giữa hai mặt đáy.

+ Tính A’H

Ta có: AC = A D 2 + C D 2 − 2. A D . C D . cos 120 ° = a 3 ⇒  AO =  a 3 2

Theo giả thiết ⇒  hình chóp A’.ABD là hình chóp đều, nên ta có:

AH = 2/3 AO =  a 3 3

A’H =  A ' A 2 − A H 2 = a 2 − a 2 3 = a 6 3

Vậy khoảng cách giữa hai đáy (ABCD) và (A’B’C’D’) là a 6 3 .

Đáp án B

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PD
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
DL
Xem chi tiết
PB
Xem chi tiết