Timf x \(\varepsilon\)Z
x.(x+3)=0
(x-2).(5-x)=0
Timf x
a) 3.(x-2) + x. ( x-2) = 0
b) 4x.(x-2) -x +2 = 0
\(\text{a) 3.(x-2)+x.(x-2)=0}\)
\(\Leftrightarrow\)\(\text{(x-2)(3+x)=0}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\3+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
\(\text{Vậy x=2 hoặc x=-3}\)
\(b,4x.\left(x-2\right)-x+2\)=0
\(\Leftrightarrow4x.\left(x-2\right)-\left(x-2\right)\)=0
\(\Leftrightarrow\left(x-2\right)\left(4x-1\right)\)=0
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{1}{4}\end{array}\right.\)
Vậy x=2 hoặc \(x=\frac{1}{4}\)
a) 3.(x-2) + x. ( x-2) = 0
(x - 2)(3 + x) = 0
TH1:
x - 2 = 0
x = 2
TH2:
3 + x = 0
x = -3
Vậy x = 2 hoặc x = -3
b) 4x.(x-2) -x +2 = 0
4x(x - 2) - x + 2 = 0
(x - 2)(4x - 1) = 0
TH1:
x - 2 = 0
x = 2
4x - 1 = 0
4x = 1
x = 1/4
Vậy x = 2 hoặc x = 1/4
a) 3 . ( x - 2 ) + x . ( x - 2 ) = 0
=> 3x - 6 + 2x - 2x = 0
=> 3x + 2x - 2x = 0 + 6
=> 3x = 6
=> x = 6 : 3 = 2
b) 4x . ( x - 2 ) - x + 2 = 0
=> 5x - 6x - x + 2 = 0
=> 5x - 6x - x = 0 - 2 = - 2
=> - 2x = - 2
=> x = - 2 : ( - 2 )
=> x = 1
timf x,y (x-1)^2+(y+3)^2=0
\(\left(x-1\right)^2+\left(y+3\right)^2=0\left(1\right)\)
Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0,\forall x\\\left(y+3\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+1\right)^2=0^2\\\left(y+3\right)^2=0^2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+1=0\\y+3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
timf x bieets
a) x^2-25-(x-5)=0
b)(2x-1)^2-(4x^2-1)=0
c)x^2(x^2+4)-x^2-4=0
a) pt
<=> (x - 5)(x + 5) - (x - 5) = 0
<=> (x - 5)(x + 4) = 0
<=> x - 5 = 0 hoặc x + 4 = 0
<=> x = 5 hoặc x = -4
b) pt
<=> (2x - 1)(2x - 1 - 2x - 1) = 0
<=> (2x - 1).(-2)=0
<=> 2x - 1 = 0
<=> x = 1/2
c) pt
<=> (x - 1)(x + 1)(x^2 + 4) = 0
<=> x - 1 = 0 hoặc x + 1 = 0 hoặc x^2 + 4 = 0
<=> x = 1 hoặc x = -1
a,x2−52−(x−5)=0<=>(x−5)(x+5)−(x−5)=0<=>(x−5)(x+4)=0=>x=5;x=−4.b,x2−x−6=0<=>x2−3x+2x−6=0<=>x(x−3)+2(x−3)=0<=>(x+2)(x−3)=0=>x=3;x=−2
a. x2 - 25 - (x - 5) = 0
<=> x2 - 52 - (x - 5) = 0
<=> (x - 5)(x + 5) - (x - 5) = 0
<=> (x + 5 - 1)(x - 5) = 0
<=> (x + 4)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)
b. (2x - 1)2 - (4x2 - 1) = 0
<=> (2x - 1)2 - (2x - 1)(2x + 1) = 0
<=> (2x - 1)(1 - 2x + 1) = 0
<=> (2x - 1)(2 - 2x) = 0
<=> \(\left[{}\begin{matrix}2x-1=0\\2-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
c. x2(x2 + 4) - x2 - 4 = 0
<=> x2(x2 + 4) - (x2 + 4) = 0
<=> (x2 - 1)(x2 + 4) = 0
<=> (x - 1)(x + 1)(x2 + 4) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x+1=0\\x^2+4=0\left(VLí\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Help me !!
1 tìm x \(\varepsilon\) Q
a, x - 3 < 1/ 2
b, 2x -1 > x- 3
c, -5 / x - 5 < 0
d , x - 3/ 4 < 0
e ( x - 3 ) . ( x + 4 ) > 0
g ( x+1 ).( x +2) <0
timf x
(x-1)^2 -9(x-2)^2=0
\(\Leftrightarrow x^2-2x+1-9x^2+36x-36=0\\ \Leftrightarrow-8x^2+34x-35=0\\ \Leftrightarrow8x^2-34x+35=0\\ \Leftrightarrow8x^2-20x-14x+35=0\\ \Leftrightarrow\left(2x-5\right)\left(4x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{7}{4}\end{matrix}\right.\)
1> Timf x
a . x2 - 25 - ( x + 5 ) =0
2 > Timf GTNN cua b thuc
a . A = (x-1)(x-3) +11
b . B= (2x-1)2+ (x-2)2
3> Phan tich da thuc thanh nhan tu
a . x3 + 27 + (x-3)(x-9)
b. 4x2 - 25 - (2x-5)(2x+7)
bài 2 : tìm x \(\varepsilon\) z , biết
a) x(x-2)=0
b) x\(^2\)(x-5)+2(x-5)=0
a) \(x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy x=0 hoặc x=-2
b) \(x^2\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
Vậy x=5
a) x(x-2)=0
=> x=0 hoặc x-2=0
=> x=0 hoặc x=0+2
=> x=0 hoặc x = 2
Bài 2 : Tìm x \(\in\) Z , biết :
a) x ( x-2 ) = 0
=> x = 0 hoặc x -2 = 0
* x - 2 = 0 => x = 2 .
Vậy x = 0 hoặc x = 2
b) x\(^2\) ( x - 5 ) + 2 ( x-5 ) = 0
=> ( x -5 ) ( x\(^2\) + 2 ) = 0
=> x - 5 = 0 hoặc x\(^2\) + 2 = 0
*Nếu x - 5 = 0 => x = 5
* Nếu x\(^2\) + 2 = 0 => x\(^2\) = -2 => Không có giá trị nào để x\(^2\) = -2 => x ở trường hợp này ko xảy ra .
Vậy : x = 5
5x^4-12x^3-41x^2+20=0. timf x
Bai 2 timf x biết
A) -2x(x-4)=0
\(-2x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(-2x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)