a) pt
<=> (x - 5)(x + 5) - (x - 5) = 0
<=> (x - 5)(x + 4) = 0
<=> x - 5 = 0 hoặc x + 4 = 0
<=> x = 5 hoặc x = -4
b) pt
<=> (2x - 1)(2x - 1 - 2x - 1) = 0
<=> (2x - 1).(-2)=0
<=> 2x - 1 = 0
<=> x = 1/2
c) pt
<=> (x - 1)(x + 1)(x^2 + 4) = 0
<=> x - 1 = 0 hoặc x + 1 = 0 hoặc x^2 + 4 = 0
<=> x = 1 hoặc x = -1
a,x2−52−(x−5)=0<=>(x−5)(x+5)−(x−5)=0<=>(x−5)(x+4)=0=>x=5;x=−4.b,x2−x−6=0<=>x2−3x+2x−6=0<=>x(x−3)+2(x−3)=0<=>(x+2)(x−3)=0=>x=3;x=−2
a. x2 - 25 - (x - 5) = 0
<=> x2 - 52 - (x - 5) = 0
<=> (x - 5)(x + 5) - (x - 5) = 0
<=> (x + 5 - 1)(x - 5) = 0
<=> (x + 4)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)
b. (2x - 1)2 - (4x2 - 1) = 0
<=> (2x - 1)2 - (2x - 1)(2x + 1) = 0
<=> (2x - 1)(1 - 2x + 1) = 0
<=> (2x - 1)(2 - 2x) = 0
<=> \(\left[{}\begin{matrix}2x-1=0\\2-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
c. x2(x2 + 4) - x2 - 4 = 0
<=> x2(x2 + 4) - (x2 + 4) = 0
<=> (x2 - 1)(x2 + 4) = 0
<=> (x - 1)(x + 1)(x2 + 4) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x+1=0\\x^2+4=0\left(VLí\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)