a.\(\sqrt{\dfrac{3x-2}{5}}\)
b.\(\sqrt{\dfrac{2x-3}{-3}}\)
Tìm x để các căn thức sau có nghĩa
tìm x để căn thức sau được xác định
1)\(\sqrt{\dfrac{-2}{2x-2}}\)
2)\(\sqrt{\dfrac{2}{3x-1}}\)
3)\(\sqrt{\dfrac{2x-2}{-2}}\)
4)\(\sqrt{\dfrac{3x-2}{5}}\)
5)\(\sqrt{\dfrac{x-2}{x+3}}\)
1: ĐKXĐ: -2/2x-2>=0
=>2x-2<0
=>x<1
2: ĐKXĐ: 2/3x-1>=0
=>3x-1>0
=>x>1/3
3: ĐKXĐ: 2x-2/(-2)>=0
=>2x-2<=0
=>x<=1
4: ĐKXĐ: (3x-2)/5>=0
=>3x-2>=0
=>x>=2/3
5: ĐKXĐ: (x-2)/(x+3)>=0
=>x>=2 hoặc x<-3
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
Tìm điều kiện để căn thức sau có nghĩa:
a) \(\sqrt{2x-5}\) b)\(\sqrt{\dfrac{-1}{3x-2019}}\) c)\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\)
a: ĐKXĐ: \(x\ge\dfrac{5}{2}\)
b: ĐKXĐ: \(x< 673\)
c: ĐKXĐ: x>3
(*) tìm x để căn thức sau có nghĩa:
\(a,\sqrt{2x-1}\\ b,\sqrt{\dfrac{3}{x+1}}\\ c,\sqrt{3x^2}\\ d,\sqrt{\dfrac{3}{x^2}}\\ e,\sqrt{-\dfrac{1}{x^2+2}}\\ f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)
\(a,\sqrt{2x-1}\)
\(\sqrt{2x-1}\) có nghĩa khi:
\(2x-1\ge0\\ \Leftrightarrow2x\ge1\\ \Leftrightarrow x\ge\dfrac{1}{2}\)
\(b,\sqrt{\dfrac{3}{x^{ }+1}}\)
\(\sqrt{\dfrac{3}{x+1}}\) có nghĩa khi:
\(x+1\ge0\\ \Leftrightarrow x\ge-1\)
\(c,\sqrt{3x^2}\)
\(\forall x\in Rvì3x^2\ge0\)
\(d,\sqrt{\dfrac{3}{x^2}}\\ \forall x\in Rvìx^2\ge0\)
\(e,\sqrt{\dfrac{-1}{x^2+2}}\)
Không có nghĩa \(\forall x\in R\)
\(f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)
\(\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\) có nghĩa khi:
\(\dfrac{2}{3}x-\dfrac{1}{5}\ge0\\ \)
\(\Leftrightarrow\)\(\dfrac{2}{3}x\ge\dfrac{1}{5}\\ \)
\(x\ge\dfrac{1}{10}\)
Tìm x để các căn bậc hai sau có nghĩa
a) \(\sqrt{\dfrac{15+3x^2}{-6}}\) b) \(\sqrt{\dfrac{-81}{-12-x^2}}\)
c) \(\sqrt{\dfrac{31\left(x^2+21\right)}{3}}\) d) \(\sqrt{\dfrac{-12}{11+x^2}}\)
e) \(\sqrt{\dfrac{21}{-x^2-17}}\)
a: ĐKXĐ: 3x^2+15/-6>=0
=>3x^2+15<=0(vô lý)
b: ĐKXĐ: -81/-x^2-12>=0
=>-x^2-12<0
=>-x^2<12
=>x^2>-12(luôn đúng)
c: ĐKXĐ: 31(x^2+21)/3>=0
=>x^2+21>=0(luôn đúng)
d: ĐKXĐ: -12/x^2+11>=0
=>x^2+11<0(vô lý)
e: ĐKXĐ: 21/-x^2-17>=0
=>-x^2-17>0
=>x^2+17<0(vô lý)
Tìm giá trị của x để các biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{3x-1}{5}}\)
b)\(\sqrt{\dfrac{3}{15-2x}}\)
c) \(\sqrt{\dfrac{-2x}{x^2-3x+9}}\)
a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)
b: ĐKXĐ: \(x< \dfrac{15}{2}\)
c: ĐKXĐ: \(x\le0\)
Tìm x để các căn thức sau có nghĩa
a) \(\sqrt{-x-8}\)
b) \(\sqrt{\dfrac{1}{x^2-2x+1}}\)
c) \(\dfrac{\sqrt{x-2}}{5-x}\)
d) \(\sqrt{x^2+3}\)
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
Tìm x để các căn thức sau có nghĩa:
a,\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
b,\(\sqrt{\dfrac{3}{1-5x}}\)
a. ĐKXĐ: Mọi x
b. ĐKXĐ: x > \(\dfrac{1}{5}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)