Tìm x,y thuộc Z biết:
a) (2x+1).(2y-2)=0
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Bài 4: tìm x,y ϵ Z, biết:
a) (x - 3) (2y - 6) = 5
b) (2x + 1) (y + 2)= 10
c) xy - 5x + 2y = 7
d) xy - 3x - 4y = 5
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
Tìm x, y ∈ Z, biết:
a, x.y = -9
b, (2x + 1).(2y - 5) = 15
a: \(\left(x,y\right)\in\left\{\left(1;-9\right);\left(-9;1\right);\left(-1;9\right);\left(9;-1\right);\left(3;-3\right);\left(-3;3\right)\right\}\)
x^4-y^4+z^4+2x^2y^z+3x^2+4z^2+1=0 tìm x,y thuộc z
bài 1:tìm x thuộc Z
a,(2x-6).(x+2)= 0
b,(x^2+7).(x^2-25)=0
c,|2x-1|=4
d,(x^2-9).(x^2-49)=0
bài 2: tìm x,y thuộc Z
a,(x-3).y=15
b,x.(2y-1)=18
c,(3x-1).(2y+3)=28
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
suy ra 2x-6 =0 hoặc x+2=0
sau đó bạn giải từng trường hợp
1c) |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}}\)
=> \(\orbr{\begin{cases}2x=5\\2x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
vì x \(\in\)Z => ko có giá trị x
d) (x2 - 9)(x2 - 49) = 0
=> \(\orbr{\begin{cases}x^2-9=0\\x^2-49=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=9\\x^2=49\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm3\\x=\pm7\end{cases}}\)
1.Tìm x thuộc Z biết:
/2x-5/=13.
2.Tìm x,y thuộc Z biết:
a)(2x+1).(2y-2)=0
b)x.y + 3x -7y=21
Tìm x,y thuộc Z, biết: 2x^2y - x^2 - 2y - 2 = 0
\(2x^2y-x^2-2y-2=0\Leftrightarrow x^2\left(2y-1\right)-\left(2y-1\right)-3=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(2y-1\right)=3=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)=1.3=3.1\)
Tới đây giải nghiệm nguyên như bình thường
Tìm x,y,z biết:
a) 3x=2y, 7y=5z và x-y+z=32
b) \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) và x.y=24
c)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
d)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và x.y.z=810
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0