So sánh:
a) 5 6 − − 7 12 + 1 24 và 2
b) 3 8 + 5 − 14 − − 6 21 và 5 21 − 2 7
BÀI 1 SO SÁNH:A,11/12 VÀ 23/24 B,3/-20 VÀ -7/12 BÀI 2:2/5-3/4+/12 7/-8-5/12+1/6
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
So sánh:
a) \(\sqrt{7}\) + \(\sqrt{3}\) và \(\sqrt{5}\) + \(\sqrt{6}\)
b) \(\sqrt{4-3\sqrt{3}}\) và \(\sqrt{3}\) - 1
b: \(\sqrt{3}-1=\sqrt{4-2\sqrt{3}}\)
mà \(4-3\sqrt{3}< 4-2\sqrt{3}\)
nên \(\sqrt{4-3\sqrt{3}}< \sqrt{3}-1\)
Đề này sai rồi bạn vì \(4-3\sqrt{3}< 0\)
không quy đồng mẫu số hay tử số hãy so sánh:
a)\(\dfrac{4}{9}\);\(\dfrac{1}{2}\) c)\(\dfrac{-5}{8}\);\(\dfrac{17}{-18}\)
b)\(\dfrac{5}{8}\);\(\dfrac{7}{12}\) d)\(\dfrac{8}{-15}\);\(\dfrac{-2}{3}\)
helppp me!!!
a) \(\dfrac{4}{9}< \dfrac{4}{8}=\dfrac{1}{2}\)
b) \(\dfrac{5}{8}=\dfrac{15}{24}>\dfrac{14}{24}=\dfrac{7}{12}\)
a: \(\dfrac{4}{9}< \dfrac{1}{2}\)
b: \(\dfrac{5}{8}>\dfrac{7}{12}\)
c: \(-\dfrac{5}{8}>-\dfrac{17}{18}\)
d: \(-\dfrac{8}{15}>-\dfrac{2}{3}\)
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
Bài 4: So sánh:
a. \(\dfrac{2}{3}\)và\(\dfrac{1}{4}\)
b. \(\dfrac{7}{10}\)và\(\dfrac{7}{8}\)
c. \(\dfrac{6}{7}\)và\(\dfrac{3}{5}\)
d. \(\dfrac{14}{21}\)và\(\dfrac{60}{72}\)
\(a:ta.c\text{ó}:BCNN:12\\ \dfrac{2}{3}=\dfrac{2\cdot4}{3\cdot4}=\dfrac{8}{12};\dfrac{1}{4}=\dfrac{1\cdot3}{4\cdot3}=\dfrac{3}{12}\\ v\text{ì }\dfrac{8}{12}< \dfrac{3}{12}n\text{ê}n\dfrac{2}{3}< \dfrac{1}{4}\\ b:ta.c\text{ó}:\\ 10=2\cdot5\\ 8=2^3\\ \Rightarrow BCNN=2^3\cdot5=8\cdot5=40\\ \dfrac{7}{10}=\dfrac{7\cdot4}{10\cdot4}=\dfrac{28}{40};\dfrac{7}{8}=\dfrac{7\cdot5}{8\cdot5}=\dfrac{35}{40}\\ v\text{ì }\dfrac{28}{40}< \dfrac{35}{40}n\text{ê}n\dfrac{7}{10}< \dfrac{7}{8}\\ c:ta.c\text{ó}:\\ 7=7;5=5\\ \Rightarrow BCNN=7\cdot5=35\\ \dfrac{6}{7}=\dfrac{6\cdot5}{7\cdot5}=\dfrac{30}{35};\dfrac{3}{5}=\dfrac{3\cdot7}{5\cdot7}=\dfrac{21}{35}\\ v\text{ì }\dfrac{30}{35}>\dfrac{21}{35}n\text{ê}n\dfrac{6}{7}>\dfrac{3}{5}\\ d:ta.c\text{ó}:\\ 21=3\cdot7\\ 72=2^3\cdot3^2\\ \Rightarrow BCNN=2^3\cdot3^2\cdot7=504\\ \dfrac{14}{21}=\dfrac{14\cdot24}{21\cdot24}=\dfrac{336}{504};\dfrac{60}{72}=\dfrac{60\cdot7}{72\cdot7}=\dfrac{420}{504}\\ v\text{ì }\dfrac{336}{504}< \dfrac{420}{504}n\text{ê}n\dfrac{14}{21}< \dfrac{60}{72}\)
So sánh:
a) (1/80) mũ 7 & (1/243) mũ 6
b) (3/8) mũ 5 & (5/243) mũ 3
a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)
mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)
nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)
\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)
\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)
\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{1}{80}\right)^7\&\left(\dfrac{1}{243}\right)^6\)
\(\dfrac{1}{80}>\dfrac{1}{81}=\dfrac{1}{3^4}\)
\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{3^4}\right)^7=\dfrac{1}{3^{7.4}}=\dfrac{1}{3^{28}}>\dfrac{1}{3^{30}}\)
\(=\dfrac{1}{\left(3^5\right)^6}=\left(\dfrac{1}{243}\right)^6\)
\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
So sánh:
a) \({( - 2)^4} \cdot {( - 2)^5}\) và \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) và \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2}\) và \({\left[ {{{(0,3)}^2}} \right]^3}\);
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) và \({\left( {\frac{3}{2}} \right)^2}\).
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
(-2) ^4 . (-2) 65 và ( -2) ^ 12 : ( -2) ^3
=( -2) ^ 4+5 =(-2)^9 và (-2) ^12-3 = ( -2) ^9
vậy ( -2) ^9 = (-2) ^9
Nên (-2) ^4 .( -2) ^5 = ( -2) ^ 12 : ( -2) ^3
So sánh:
a) 12,26 và 12,(24); b) 31,3(5) và 29,9(8)
a) Ta có: 12,(24) = 12,242424….
Đi từ trái sang phải, chữ số thập phân thứ 2 của 2 số khác nhau. Vì 6 > 4 nên 12,26 >12,(24)
b)
Đi từ trái sang phải, chữ số ở hàng chục của 2 số khác nhau. 3 > 2 nên 31,3(5) > 29,9(8)
So sánh:
a) 2 và √3 ; b) 6 và √41 ; c) 7 và √47
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
So sánh:
a) \(\dfrac{-9}{4}\) và \(\dfrac{1}{3}\).
b) \(\dfrac{-8}{3}\) và \(\dfrac{4}{-7}\).
c) \(\dfrac{9}{-5}\) và \(\dfrac{7}{-10}\).
em trả lời ccaua này hi vọng thầy còn nhớ em
a) -9/4<`1/3
a) \(\dfrac{-9}{4}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(\dfrac{-9}{4}< \dfrac{1}{3}\)