Với giá trị nào của m thì bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 vô nghiệm ?
A. m = 1
B. m ≥ 1
C. m < 1
D. m ≤ 1
Giá trị nào của m thì bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 vô nghiệm là:
A. m = 1
B. m ≥ 1
C. m < 1
D. m ≤ 1
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
Với giá trị nào của m thì bất phương trình ( m 2 + m + 1 ) x - 5 m ≥ ( m 2 + 2 ) x - 3 m - 1 vô nghiệm ?
A. m > 1
B. m = 1
C. m < 1
D. m ≤ 1
Cho phương trình 3 x 2 + 2 ( 3 m - 1 ) x + 3 m 2 - m + 1 = 0 . Với giá trị nào của m thì phương trình vô nghiệm?
Với giá trị nào của m thì hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương:
A. m = -3
B. m = -2
C. m = -1
D. m = 3
Chọn D.
+) (m + 2)x ≤ m + 1
+) 3m(x - 1) ≤ -x - 1 ⇔ 3mx - 3m + x + 1 ≤ (3m + 1)x ≤ 3m - 1
Hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương khi và chỉ khi hai bất phương trình có cùng tập nghiệm khi đó:
⇔ (m + 1)(3m + 1) = (m + 2)(3m - 1)
⇔ 3 m 2 + m + 3m + 1 = 3 m 2 - m + 6m - 2
⇔ 3 m 2 + m + 3m + 1 - 3 m 2 + m - 6m + 2 = 0
⇔ -m + 3 = 0
⇔ m = 3 (thỏa mãn)
1.Bất phương trình (m2-3m)x+m<2-2x vô nghiệm khi:
a.m#1 b.m#2 c.m=2 d.=3
2.Gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2-m)x +m<6x-2
GIUP MÌNH VỚI Ạ
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
Với giá trị nào của m và n thì bất phương trình sau có vô số nghiệm? (m-2n+1)x>m^2+n^2-2
Với giá trị nào của m thì bất phương trình m 2 x + m - 1 < x vô nghiệm?
A. m = 1 và m = -1
B. m = 1
C. m = -1
D. m ∈ ∅
Chọn B.
Xét bất phương trình:
m 2 x + m - 1 < x ⇔ m 2 x - x + m - 1 < 0 ⇔ ( m 2 - 1)x < 1 - m (1)
Với m = 1, bất phương trình (1) trở thành: 0x < 0 ⇔ 0 < 0 (Vô lý) ⇒ Bất phương trình vô nghiệm.
Với m = -1 , bất phương trình (1) trở thành: 0x < 2 ⇔ 0 < 2 (luôn đúng) ⇒ Bất phương trình có vô số nghiệm.
Vậy bất phương trình m 2 x + m - 1 < x vô nghiệm khi m = 1.
Tìm giá trị của tham số m để phương trình sau vô nghiệm:\(\dfrac{x^2}{4}+\left(2m+1\right)x+5m^2+3m+16=0\)
Pt vô nghiệm khi:
\(\Delta=\left(2m+1\right)^2-\left(5m^2+3m+16\right)< 0\)
\(\Leftrightarrow-m^2+m-15< 0\) (luôn đúng)
Vậy pt đã cho vô nghiệm với mọi m
với giá trị nào của m thì phương trình (m-1)x - m + 2 = 0 vô nghiệm