Cho tam giác ABC vuông tại A. Gọi I là trung điểm cuả BC. CMR: AI= 1/2BC
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) CMR tam giác BID bằng tam giác CIA
b) CMR : BD vuông góc với AB
c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC
d) CMR: AB là tia phân giác cuả góc DAM
Em tham khảo nhé!
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
cho tam giác ABC,D thuộc AD sao AD=1/2BC gọi M là trung điểm BC, I là giao điểm BD và AM (CMR AI=IM)
B2: cho tam giác ABC, M là trung điểmBC. trên tia đối BA lấy D sao cho BD=AB gọi K là giao điểm DM và AC .(CMR AK=2KC) (vẽ thêm trung điểm AK
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông tại A có AC = 1/2BC. Trên cạnh AC lấy điểm N, trên cạnh BC lấy điểm M sao cho CN = BM. Gọi I là trung điểm của MN. Chứng minh đường trung tuyến kẻ từ A của tam giác ABC đi qua điểm I
cho tam giác BFC cân tại B kẻ EF vuông góc với BC tại E , CA vuông góc với BF tại A
a) CMR tam giác BEF = tam giác BAC
b) EF cắt CA tại D . CMR : BD là tia phân giác của góc ABC
c) gọi M là trung điểm cuả FC . CMR : BM vuông góc với AE
ai nhanh mk tick nha
HÌNH THÌ CẬU TỰ VẼ NHÉ!!
a. xét hai tam giác vuông BEF và BAC có:
BF=BC(tam giác BFC cân tại B)
\(\widehat{FBC}\)\(chung\)
\(\widehat{BEF}=\widehat{BAC}\)
=> Hai tam giác BEF= BAC ( cạnh huyền-góc nhọn)
=> BE=BA( 2 cạnh tương ứng)
b. Xét hai tam giác vuông BDE và BDA có:
BD chung
BE=BA(cmt)
\(\widehat{BED}=\widehat{BAD}\)
=> Hai tam giác BDE=BDA (cạnh huyền-góc nhọn)
=> \(\widehat{ABD}=\widehat{EBD}\)(2 góc tương ứng) (1)
mà tia BM nằm giữa hai tia BF và BC (2)
Từ (1) và (2)=> BM là phân giác góc ABC
c. Xét hai tam giác BMC và BMF có:
BM chung
MC=MF( M là trung điểm của FC)
BF=BC( tam giác BFC cân tại B)
=> hai tam giác BMC=BMF( c.c.c)
=> \(\widehat{BMC}=\widehat{BMF}\)( 2 góc tương ứng)
mà \(\widehat{BMC}+\widehat{BMF}=180^o\)( 2 góc kề bù)
=> \(\widehat{BMC}=\widehat{BMF}=180^O:2=90^O\)
=> \(BM\perp FC\) hay \(BM\perp AE\)( đpcm)
#chúc_cậu_học_tốt
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
Trên tia đối của tia MA, lấy điểm D sao cho MA=MD
Xét tứ giác ACDB có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AD
Do đó: ACDB là hình bình hành
Hình bình hành ACDB có \(\widehat{CAB}=90^0\)
nên ACDB là hình chữ nhật
Suy ra: BC=AD
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}BC\)
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
áp dụng tính chất đường trung tuyến của tam giác vuông
=> AN=1/2BC