Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) CMR tam giác BID bằng tam giác CIA
b) CMR : BD vuông góc với AB
c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC
d) CMR: AB là tia phân giác cuả góc DAM
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
cho tam giác BFC cân tại B kẻ EF vuông góc với BC tại E , CA vuông góc với BF tại A
a) CMR tam giác BEF = tam giác BAC
b) EF cắt CA tại D . CMR : BD là tia phân giác của góc ABC
c) gọi M là trung điểm cuả FC . CMR : BM vuông góc với AE
ai nhanh mk tick nha
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
Cmr: Nếu tam giác ABC có M là trung điểm của BC và AM =1/2BC thì tam giác ABC vuông tại A
cho tam giác ABC vuông tại A ( AB < AC ) , kẻ AH vuông góc với BC tại H . trên cạch Ac lấy điểm I sao cho Ah = AI . Q
AID và AD là tia phân giác góc HAC
b, tia ID cắt AH tại M . CMR tam giác MCD cân
c, gọi N là trung điểm của MC , CMR AN,MI,BC đồng quy
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) CMR tam giác BID bằng tam giác CIA
b) CMR : BD vuông góc với AB
c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC
d) CMR: AB là tia phân giác cuả góc DAM
Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC
a) C/M: tam giác AKB bằng tam giác AKC
b) C/M: AK vuông góc với BC
c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
cho tam giác abc vuông tại a. MA là trung điểm bc, trên tia đối cuả tai MA lấy điểm D sao cho AM=MP. gọi I và K lần lượt là chân đường vuông góc hạ từ B và C xuống AD, N là chân đường vuông góc hạ từ M xuống AC.
CMR:
a, BK=CI và BK//CI ;
b, KN<MC ; c, tam giác ABC thỏa mãn thêm điều kiện gì để AI=IM=MK=KD ;
d, gọi H là chân đường vuông góc hạ từ D xuống BC. chứng minh BI,DH,MN đồng quy