Hệ bất phương trình x + m ≤ 0 ( 1 ) - 2 x + 10 < 0 ( 2 ) có nghiệm khi và chỉ khi
A. m < -5
B. m > -5
C. m > 5
D. m < 5
Cho hệ bất phương trình m x 2 - x - 5 ≤ 0 ( 1 - m ) x 2 + 2 m x + m + 2 ≥ 0 . Các giá trị của x thỏa mãn hệ bất phương trình khi m = 1 là:
A. S = 1 - 2 21 2 ; 1 + 2 21 2
B. S = 1 - 3 21 2 ; 1 + 3 21 2
C. S = 1 - 4 21 2 ; 1 + 4 21 2
D. S = 1 - 21 2 ; 1 + 21 2
Chọn D.
Với m = 1 hệ bất phương trình trở thành:
Vậy tập nghiệm hệ bất phương trình là
Cho hệ bất phương trình mx + 2 m > 0 2 x + 3 5 > 1 - 3 x 5
Xét các mệnh đề sau:
(I) Khi m< 0 thì hệ bất phương trình đã cho vô nghiệm.
(II) Khi m= 0 thì hệ bất phương trình đã cho có tập nghiệm là R
(III) Khi m≥ 0 thì hệ bất phương trình đã cho có tập nghiệm là
(IV) Khi m> 0 thì hệ bất phương trình đã cho có tập nghiệm là
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng ?
A. 1
B. 0
C. 2
D. 3
Cho hệ bất phương trình mx + 2 m > 0 2 x + 3 5 > 1 - 3 x 5
Xét các mệnh đề sau:
(I) Khi m< 0 thì hệ bất phương trình đã cho vô nghiệm.
(II) Khi m= 0 thì hệ bất phương trình đã cho có tập nghiệm là R.
(III) Khi m ≥ 0 thì hệ bất phương trình đã cho có tập nghiệm là 2 5 ; + ∞
(IV) Khi m > 0 thì hệ bất phương trình đã cho có tập nghiệm là 2 5 ; + ∞
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng ?
A. 1
B. 0
C. 2
D. 3
Tìm tất cả tham số `m` để bất phương trình `x^2-x+m(1-m)<=0` là hệ quả của bất phương trình `\sqrt{\sqrt{x-1}+4}-\sqrt{\sqrt{x-1}+1}>=1`?
`A.m=1/2`
`B.m<=0` hoặc `m>=1`
`C.m>=1`
`D.m<=0`
Với m = 1/2 thì bpt (1) \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow x=\dfrac{1}{2}\)
bpt(2) \(\sqrt{\sqrt{x-1}+4}-\sqrt{\sqrt{x-1}+1}\ge1\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\sqrt{x-1}+4}\ge1+\sqrt{\sqrt{x-1}+1}\)
\(\Leftrightarrow\sqrt{x-1}+4\ge1+\sqrt{x-1}+1+2\sqrt{\sqrt{x-1}+1}\)
\(\Leftrightarrow2\ge2\sqrt{\sqrt{x-1}+1}\Leftrightarrow1\ge\sqrt{\sqrt{x-1}+1}\) \(\Leftrightarrow\sqrt{x-1}+1\le1\Leftrightarrow\sqrt{x-1}\le0\Leftrightarrow x=1\)
bpt (2) có no x = 1 . Loại A
Với m khác 1/2 \(x^2-x+m\left(1-m\right)\le0\)
\(\Leftrightarrow x^2-m^2-\left(x-m\right)\le0\) \(\Leftrightarrow\left(x-m\right)\left(x+m-1\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge m;x\le1-m\\x\le m;x\ge1-m\end{matrix}\right.\)
Vì bpt (1) là hệ quả bpt (2) nên bpt (1) có no x = 1
Khi đó : \(\left[{}\begin{matrix}1\ge m;1\le1-m\\1\le m;1\ge1-m\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge1\end{matrix}\right.\)
Chọn B
Tìm tất cả tham số mm để bất phương trình x2−x+m(1−m)≤0x2-x+m(1-m)≤0 là hệ quả của bất phương trình √√x−1+4−√√x−1+1≥1x-1+4-x-1+1≥1?
A.m=12A.m=12
B.m≤0B.m≤0 hoặc m≥1m≥1
C.m≥1C.m≥1
D.m≤0D.m≤0
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau:
2 m 2 - m - 5 > 0
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau:
- m 2 + m + 9 > 0
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau:
m 2 - ( 2 m - 1 ) ( m + 1 ) < 0
m 2 - ( 2 m - 1 ) ( m + 1 ) < 0
⇔ - m 2 - m + 1 < 0
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau:
( 2 m - 1 ) 2 - 4 ( m + 1 ) ( m - 2 ) ≥ 0
( 2 m - 1 ) 2 - 4 ( m + 1 ) ( m - 2 ) ≥ 0 ⇔ 9 ≥ 0. Bất phương trình có tập nghiệm là R.
Cho hệ bất phương trình 0≤ x ≤ 4; 0 ≤ y ≤ 5; y - x ≥ 3
a. Biểu diễn tập nghiệm của hệ bất phương trình trên hệ trục Oxy
b. Tìm giá trị lớn nhất của biểu thức S= 2x + y