Có 3 học sinh nữ và 2 học sinh nam.Hỏi có bao nhiêu cách sắp xếp các học sinh vào một bàn dài có 5 ghế ngồi
A. 34
B. 46
C. 120
D. 26
Có 3 học sinh nữ và 2 học sinh nam.Hỏi có bao nhiêu cách sắp xếp các học sinh vào một bàn dài có 5 ghế ngồi
A. 34
B. 46
C. 120
D. 26
Có 3 học sinh nữ và 2 học sinh nam. Hỏi có bao nhiêu cách sắp xếp các học sinh vào một bàn dài có 5 ghế ngồi.
A. 34
B. 46
C. 120
D. 26
Eo ơi, đừng!! Tách ra đi bạn ơi, để thế này khủng bố mắt người đọc quá :(
Mà hình như mấy bài này có trong tập đề của thầy tui gởi nè :v
5 người khách ngồi vào 1 bàn tròn 5 ghế.
a) Nếu các ghế đc ghi số. Hỏi có bao nhiêu cách xếp
b) Nếu các ghế ko ghi số. Hỏi có bao nhiêu cách mời ngồi
Ghi rõ cách làm dùm mình nha mình tick cho
Câu 1. Có bao nhiêu cách sắp xếp 5 người ngồi vào một bàn dài có 5 chỗ ngồi? A. 5. B. 5 * 4 C. 5 * 5 D. 5!.
Một bàn dài có 2 dãy ghế đối diện với nhau, mỗi dãy gồm 6 ghế. Người ta muốn sắp xếp chỗ ngồi cho 6 học sinh trường A và 6 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp chỗ ngồi trong mỗi trường hợp sau:
a) Bất kì 2 học sinh nào ngồi cạnh nhau hoặc đối diện trường khác nhau.
b) Bất kì 2 học sinh nào ngồi đối diện nhau thì khác trường nhau
a) Có 2 cách xếp.
Bạn A có 6! cách.
Bạn B có 6! cách.
Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.
b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.
Chọn 1 học sinh B đối diện A có 6 cách.
Cứ chọn liên tục như vậy ta được:
\(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)
cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường nhau.
Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:
a. Họ ngồi chỗ nào cũng được?
b. Nam ngồi kề nhau, nữ ngồi kề nhau?
c. Nam và nữ ngồi xen kẻ nhau?
d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
a. Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông
một lớp học nếu xếp 3 em ngồi vào 1 bộ bàn ghế thì còn thừa 4 em.Nếu xếp 5 em học sinh ngồi vào 1 bộ bàn ghế thì thừa 4 bộ bàn ghế.Hỏi lớp học đó có bao nhiêu bộ bàn ghế?Bao nhiêu học sinh?
chịu thui nhưng chọn mk nha mk sẽ k bn với bạn nha
Có 7 học sinh nữ và 3 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để:
a) Sắp xếp tùy ý.
b) Các bạn nam ngồi cạnh nhau và các bạn nữ ngồi cạnh nhau.
c) 3 học sinh nam ngồi kề nhau.
d) Không có 2 bạn nam nào ngồi cạnh nhau.
a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)
b: TH1: 3 nam 2 nữ
=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)
TH2: 2 nam 3 nữ
=>Số cách xếp là: 2!*3!*2!(cách)
TH3: 1 nam 4 nữ
=>Số cách xếp là 1!*4!*2!(cách)
TH4: 0 nam 5 nữ
=>Số cách xếp là 5!(cách)
=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)
c: Số cách chọn 2 nữ trong 7 nữ là:
\(C^2_7\left(cách\right)\)
Số cách xếp 3 nam và 2 nữ là:
\(3!\cdot3!\left(cách\right)\)
=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)
a) Một bàn dài có 2 dãy ghế đối diện nhau, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6
học sinh trường A và 6 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách sắp xếp sao cho bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau
Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách
Xếp 6 học sinh trường B vào dãy còn lại: 6! cách
Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị
Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn