Tính nhanh: Tử số=(1+1/3+1/5+1/7+...+1/97+1/99)x1/5 Mẫu số=2/1x99+2/3x97+2/5x95+...+2/49x51
Tính nhanh:
Tử số=(1+1/3+1/5+1/7+...+1/97+1/99)x1/5
Mẫu số=2/1x99+2/3x97+2/5x95+...+2/49x51
Tử số=(1+1/3+1/5+1/7+...+1/97+1/99)x1/5
={ ( 1+1/99) + ( 1/3 + 1/97 ) + ( 1/5 + 1/95) +.....+(1/49 + 1/51)} X 1/5
= (100/ 1 x 99 + 100/ 3 x 97 + 100/ 5 x 95 + ...+ 100/ 49 x 51)X 1/5
= ( 1/1x 99 + 1/ 3 x 97 + 1/ 5 x 95 +...+ 1/ 49 x 51) x 20
Mẫu số=2/1x99+2/3x97+2/5x95+...+2/49x51
= ( 1/1x 99 + 1/ 3 x 97 + 1/ 5 x 95 +...+ 1/ 49 x 51) x 2
Vậy phân số có giá trị = 20/2 = 10
Mình không ghi được phân số:
Tử số: 1+1/3+1/5+1/7+.........+1/97+1/99
A=(dấu gạch ngang)
Mẫu số: 1/1x99+1/3x97+1/5x95+........+1/97x3+1/99x1
***Tính cho mình đó là phân số gì
(1+1/3+1/5+1/7+...+1/97+1/99):(1/1x99+1/3x97+1/5x95+...+1/97x3+1/99x1)
Đặt \(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right):\left(\frac{1}{1.99}+\frac{1}{3.97}+....+\frac{1}{97.3}+\frac{1}{99.1}\right)\)
Đặt \(B=\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{97.3}+\frac{1}{99.1}\)
=> 100 x B = \(\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{97.3}+\frac{100}{99.1}=1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+...+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1\)
=> 100 x B = \(2.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)
=> \(B=\frac{1}{50}.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)
Khi đó A = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{50}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{\frac{1}{50}}=50\)
1+1/3+1/5+1/7+...+.1/97+1/99/1/1x99+1/3x97+1/5x95+...+1/97x3+1/99x1
tính
1+ 1/3+ 1/5+1/7+...+1/97+1/99
1/1x99 + 1/ 3x97 + 1/5x95 +...+ 1/97x3 + 1/99x1
Người phán sử
Gọi biểu thức đó là A ta có :
\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\)
\(A=2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=2-\frac{1}{99}\)
\(A=\frac{197}{99}\)
thế còn phần ở dưới đâu?đó là một bài đấy. hiểu chưa?????????????/
\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\)
\(A=2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
A = 197/99
1+1/3+1/5...+1/97+1/99
a= _____________________________
1/1x99+1/3x97+1/5x95...+1/49x51
a=?
\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1x99}+\dfrac{1}{3x97}+\dfrac{1}{5x95}...+\dfrac{1}{49x51}}\)Rút gọn biểu thức trên về tối giản
\(choA=\dfrac{1}{1x99}+\dfrac{1}{3x97}+\dfrac{1}{5x95}+...+\dfrac{1}{97x3}+\dfrac{1}{99x1}\)
\(B=1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}\)
ko bt lm sao?!
Có tin t bảo cô m hỏi bài trên mạng không?
Mấy bài t hỏi là t đố con chính chủ xg con chính chủ nó đăng thôi
\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1x99}+\dfrac{1}{3x97}+\dfrac{1}{5x95}+...+\dfrac{1}{97x3}+\dfrac{1}{99x1}}\)