Những câu hỏi liên quan
NN
Xem chi tiết
TH
18 tháng 5 2022 lúc 17:04

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(x=y\)

Bình luận (0)
LT
18 tháng 5 2022 lúc 17:11

ta co

vt (x+y)2=x2+y2+2xy

=x2-2xy+y2+4xy≥ 4xy (dpcm)

 

Bình luận (0)
TN
Xem chi tiết
CT
Xem chi tiết
GV
Xem chi tiết
NL
24 tháng 12 2022 lúc 14:34

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y+1+xy\right)^2\) là SCP

Bình luận (0)
ND
24 tháng 12 2022 lúc 14:38

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)

 = 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)

 =(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)

 =(x+y)2+(xy+1)2+2(x+y)(1+xy)

 =(x+y+xy+1)2

 

Bình luận (0)
TN
Xem chi tiết
LT
Xem chi tiết
DV
13 tháng 10 2015 lúc 17:51

Ta có :

2x + 6y = 2x + 2.3y = 2.(x + 3y) chia hết cho 2 với mọi số tự nhiên x và y

Bình luận (0)
DV
13 tháng 10 2015 lúc 18:01

Ta có:

2x + 6y = 2.3y.(x + 3y) chia hết cho mọi số tự nhiên x và y

Bình luận (0)
DT
18 tháng 8 2024 lúc 16:19

mình ko hiểu giảng lại cho mình dc ko

Bình luận (0)
MU
Xem chi tiết
NT
16 tháng 8 2021 lúc 14:25

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TL
30 tháng 5 2021 lúc 10:21

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

Bình luận (0)
H24
Xem chi tiết
GL
2 tháng 10 2019 lúc 22:46

chứng minh rằng với mọi x,y Q ta luôn có: |x+y||x|+|y|

Bình luận (0)