Những câu hỏi liên quan
H24
Xem chi tiết
KK
6 tháng 9 2021 lúc 19:52

a. A = (a + b)3 - (a - b)3

A = \(\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

A = (a + b - a + b)\(\left[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right]\)

A = 2b(a2 + a2 + a2 + 2ab - 2ab + b2 - b2 + b2)

A = 2b(3a2 + b2)

A = 6a2b + 2b3

Bình luận (0)
NA
Xem chi tiết
AH
22 tháng 11 2021 lúc 16:43

Lời giải:

a.

$=-37-x-23+15=-x-(37+23)+15=-x-60+15=-x-(60-15)=-x-45$

b.

$=176-176+x-42=0+x-42=x-42$

c.

$=1270-1270+2x+31=0+2x+31=2x+31$

d.

$=2x-141-231+461=2x-(141+231)+461=2x-372+461$

$=2x+(461-372)=2x+89$

Bình luận (1)
MV
Xem chi tiết
NL
1 tháng 7 2021 lúc 10:20

\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)

\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)

\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)

\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)

\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)

\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)

\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)

Bình luận (0)
NT
1 tháng 7 2021 lúc 10:24

a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)

\(=\sqrt{5}\)

d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)

\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)

\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)

\(=\sqrt{11+6\sqrt{2}}\)

\(=3+\sqrt{2}\)

Bình luận (0)
NT
Xem chi tiết
H24
31 tháng 10 2021 lúc 19:40

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)

Bình luận (0)
CP
Xem chi tiết
NT
25 tháng 8 2021 lúc 14:50

a: Ta có: \(A=\left(x+2\right)\left(x-4\right)+\left(x+1\right)\left(x-6\right)\)

\(=x^2-4x+2x-8+x^2-6x+x-6\)

\(=2x^2-7x-14\)

b: \(B=\left(2a-b\right)\left(4a^2+2ab+b^2\right)=8a^3-b^3\)

c: \(C=\left(2+x\right)\left(2-x\right)\left(x+4\right)\)

\(=\left(4-x^2\right)\left(x+4\right)\)

\(=4x+16-x^3-4x^2\)

Bình luận (0)
T8
Xem chi tiết
NP
2 tháng 10 2021 lúc 16:52

a) (x+2)2+x(x-4)

   =x2+4x+4+x2-4x

   =2x2+4

b)(x-3)2-(x+3)(x-4)

  =x2-6x+9-x2+4x-3x+12

  =-5x+12

c) (3x+1)2+3x(2-4x)

   =9x2+6x+1+6x-12x2

   =-3x2+12x+1

d) (2x-4y)2-(2x-3)(2x-3y)

  =4x2-16xy+16y2-4x2+6xy+6x-9y

  =16y2-10xy+6x-9y

Bình luận (0)
HT
Xem chi tiết
KS
25 tháng 12 2021 lúc 10:42

\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)

\(=9x^2-6x+1-2x^2+x-6x+3\)

\(=7x^2-11x+4\)

Bình luận (0)
H24
Xem chi tiết
HP
31 tháng 8 2021 lúc 15:47

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Bình luận (0)
NT
31 tháng 8 2021 lúc 23:36

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

Bình luận (0)
HA
Xem chi tiết
NT
6 tháng 2 2022 lúc 19:59

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)

Bình luận (0)
H24
Xem chi tiết
EC
7 tháng 9 2021 lúc 9:27

Bài 2.

a) 1013 = (100+1)3 = 1003+3.1002.1+3.100.12+13 

   = 1000000+30000+300+1 = 1030301

b) 2993 = (300-1)3 = 3003-3.3002.1+3.300.12-13

   = 27000000 - 270000 + 900 -1 = 26730899

c) 993 = (100-1)3 = 1003-3.1002.1+3.100.12-1

   = 1000000 - 30000 + 300 -1 = 970299

Bình luận (0)
NM
7 tháng 9 2021 lúc 9:31

\(1,\\ b,A=\left(u-v\right)^3+3uv\left(u+v\right)\\ A=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2=u^3-v^3\\ c,6\left(c-d\right)\left(c+d\right)+2\left(c-d\right)^2-\left(c-d\right)^3\\ =6c^2-6d^2+2c^2-4cd+2d^2-c^3+3c^2d-3cd^2+d^3\\ =8c^2-c^3-4d^2-4cd+3c^2d-3cd^2+d^3\)

\(2,\\ a,101^3=\left(100+1\right)^3\\ =100^3+3\cdot10000\cdot1+3\cdot100\cdot1+1\\ =1000000+30000+300+1=1030301\\ b,299^3=\left(300-1\right)^3\\ =300^3-3\cdot90000\cdot1+3\cdot300\cdot1-1\\ =27000000-270000+900-1\\ =26730899\\ c,99^3=\left(100-1\right)^3\\ =100^3-3\cdot10000\cdot1+3\cdot100\cdot1-1\\ =1000000-30000+300-1=970299\)

Bình luận (0)
AH
7 tháng 9 2021 lúc 10:36

Bài 1:
a.

$A=u^3-3u^2v+3uv^2-v^3+3uv^2+3u^2v$

$=u^3+6uv^2-v^3$

c.

$C=(c-d)[6(c+d)+2(c-d)-(c-d)^2]$

$=(c-d)[8c+4d-(c^2-2cd+d^2)]=(c-d)(-c^2+2cd-d^2+8c+4d)$

 

Bình luận (0)