Cho hai đường thẳng y = 2 x + 6 và y = - x + m + 2 . Khi đó, giá trị của tham số m để hai đường thẳng cắt nhau tại một điểm trên trục tung là:
A. m = 4
B. m = 3
C. m = 2
D. m = 1
Cho hai đường thẳng y = (m+1)x -3 và y = (2m-1)x -5
a) Cmr khi m = \(-\frac{1}{2}\)thì hai hai đường thẳng đó vuông góc với nhau
b) Tìm tất cả các giá trị của m để 2 đường thẳng đó song song với nhau
Giúp mình nha
Cho hai đường thẳng y=(m 1)x-3 và y=(2m-1)x 4 a) Chứng minh rằng khi m= -1/2 thì hai đường thẳng đã cho vuông góc với nhau b) Tìm tất cả các giá trị của m để hai đường thẳng đã cho vuông góc với nhau
Ghi lại đề: \(y=\left(m+1\right)x-3;y=\left(2m-1\right)x+4\)
\(a,m=-\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}x-3\\y=-2x+4\end{matrix}\right.\)
Hệ số a 2 đt đã cho là \(\dfrac{1}{2};-2\) có tích là -1 nên 2 đt vuông góc
\(b,\Leftrightarrow\left(m+1\right)\left(2m-1\right)=-1\\ \Leftrightarrow2m^2+m-1=-1\\ \Leftrightarrow2m^2+m=0\\ \Leftrightarrow m\left(2m-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{1}{2}\end{matrix}\right.\)
cho hai đường thẳng: y = (m +1)x - 3 và y = (2m - 1)x + 4
a. chứng minh rằng khi m = -1/2 thì hai đường thẳng đã cho vuông góc với nhau
b. tìm tất cả các giá trị của m để hai đường thẳng đã cho vuông góc với nhau
1) Giải hệ phương trình $\left\{\begin{array}{l}3 x+4 y=6 \\ 2 x-y=-7\end{array}\right.$
2) Trong mặt phẳng tọa độ $O xy$, cho đường thẳng $d: y=5 x+m$ ($m$ là tham số) và parabol $(P): y=x^{2}$.
a) Tìm giá trị của tham số $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt.
b) Tìm tọa độ giao điểm của đường thẳng $d$ và $(P)$ khi $m=-4$.
1/
\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)
Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)
2/
a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt
Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)
b/ Khi m=-4
\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)
Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)
Cho hai đường thẳng d: (m – 2)x +(m – 6)y + m – 1= 0, ∆: (m – 4)x + (2m – 3)y – m + 5 = 0. Tất cả giá trị của m để hai đường thẳng cắt nhau là
A.m ≠ 3
B.m ≠ 6
C.m ≠ 3 và m ≠ - 6
D.không có m thỏa mãn
Xét hệ phương trình m − 2 x + m − 6 y = − m + 1 m − 4 x + 2 m − 3 y = m − 5 có định thức cấp hai là
D = m − 2 m − 6 m − 4 2 m − 3 = m − 2 . 2 m − 3 − m − 4 . m − 6
= m 2 + 3 m − 18 = m − 3 m + 6
Để hai đường thẳng cắt nhau thì hệ phương trình có nghiệm duy nhất
⟺ D ≠ 0 ⟺ m ≠ 3 m ≠ − 6
ĐÁP ÁN C
1) Cho hàm số: \(y=x^2-3x+4\) có đồ thị là P và đường thẳng d có phương trình:
\(y=2x-m\), và m là tham số. Tìm các giá trị của m để d cắt P tại hai điểm phân biệt \(A,B\) sao cho: \(OA^2+OB^2=57\) và khi đó O là toa độ góc
2) Cho hàm số \(f\left(x\right)=\sqrt{3-x}-\sqrt{3+x}-x^3-x\). Tìm tất cả giá trị của tham số a để tập nghiệm của bất phương trình \(f\left(2x-1\right)>f\left(-2a\right)\) có ít nhất là 3 số nguyên
cho đường thẳng (d):y=-mx+m+2 và parabol (p):y=x^2 a,Tìm tọa độ giao điểm của (d)và(p) khi m=2 b, Tìm các giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1;x2 sao cho x1^2+x2^2=7
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Cho hai hàm số bậc nhất: \(\left(m-\dfrac{2}{3}\right)x+3\) và y = ( 2 – m). x + n – 1. Đồ thị của các hàm số đó là hai đường thẳng song song khi: m = …… và n = …
2 đồ thị song song \(\Leftrightarrow\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\3\ne n-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{4}{3}\\n\ne4\end{matrix}\right.\)