Tìm điều kiện xác định của biểu thức A = 2 x - 1 - log ( x - 2 ) 2
A.
B.
C.
D.
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Cho biểu thức 2 2 5 1 25 5 5 x A x x x = − − − − + 1) Tìm điều kiện xác định của biểu thức A. 2) Rút gọn biểu thức A. 3) Tính giá trị của biểu thức A khi x =1.
đkxđ:\(x\ne5,x\ne-5\)
\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x-5}-\dfrac{1}{x+5}\)
\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5x+25}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(\dfrac{2x-5x-25-x+5}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=-\dfrac{4}{x-5}\)
thay x=1 vào bt A, ta được:
\(-\dfrac{4}{1-5}=1\)
1.a) tìm điều kiện xác định của biểu thức A =\(\dfrac{x-1}{x+1}:\dfrac{2x}{x^{2^{ }}-1}\)
b) tính giá trị của biểu thức A tại x = 0
a) ĐKXĐ: \(x\ne1,x\ne-1,x\ne0\)
b) Do ĐKXĐ là \(x\ne0\) nên tại x=0 thì A vô nghiệm
Cho biểu thức 2 1 1 1 . 1 1 1 A x x x a) Tìm điều kiện của x để biểu thức A xác định. b) Rút gọn biểu thức A c) Tính giá trị của A tại x = 3
a. ĐKXĐ: \(x\ne\pm1\)
b. \(A=\left(x^2-1\right)\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1-x+1-\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{-x^2+3}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\dfrac{\left(x-1\right)\left(x+1\right)\left(-x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-x^2+3\)
c. Thay x = 3 vào A ta được:
\(-\left(3\right)^2+3=-6\)
Vậy: Giá trị của A tại x = 3 là -6
a) ĐKXĐ: \(x\ne1;x\ne-1.\)
b) \(A=\left(x^2-1\right).\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right).\)
\(=\left(x^2-1\right).\dfrac{x+1-x+1-x^2+1}{x^2-1}=-x^2+3.\)
c) Thay x = 3 (TMĐK) vào A: \(-3^2+3=-6.\)
Cho biểu thức: P=x/2x-2 +x^2+1/2-2x^2
a) Tìm điều kiện xác định của P.
b) Rút gọn biểu thức P.
c) Tìm giá trị của x để .
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2x+2}\)
Bài1: Cho biểu thức:
A= x^3 - 3x^2 + 4x - 1 / x-3
a) Tìm điều kiện xác định
b) Tìm giá trị nguyên của x để biểu thức có giá trị nguyên.
Bài 2:Cho biểu thức:
P= x^3 - 3x^2 + 6 / x^2 - 3x
a) Tìm điều kiện xác định
b) Tính giá trị của P khi x = 2
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
cảm ơn bạn nha nhưng bạn có chắc là nó đúng ko
Cho biểu thức: A=2x+20/x^2-25+1/x+5+2/x-5
a. Tìm điều kiện xác định của A.
b. Rút gọn biểu thức A.
c. Tính giá trị của biểu thức A khi x = 9.
d. Tìm x để A= –3
cho biểu thức B=[ x+1/ 2x-2 +3/x2 -1 -x+3/2x+2] .2x2 -2/5
a, tìm điều kiện của biến để phân thức xác định
b, c/m rằng khi giá trị của biểu thức xác định thì nó không phụ thuộc vào biến x ?
Cho biểu thức P = (x/(x - 2) - (x - 2)/(x + 2)) / (1/(x ^ 2 - 4)) a) Tìm điều kiện của x để biểu thức P được xác định. b) Rút gọn biểu thức P. c) Tìm x để P = 0
\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}\)
a)
Để giá trị của biểu thức P được xác định, thì :
\(\left[{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-2\\x\ne-2;2\end{matrix}\right.\)
Vậy ĐKXĐ của biểu thức P là : \(x\ne\left\{2;-2\right\}\)
b)
\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}=\left(\dfrac{x}{x-2}-\dfrac{x-2}{x+2}\right):\dfrac{1}{x^2-4}=\left(\dfrac{x\left(x+2\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2-4}{1}\)
\(=\dfrac{x^2+2x-x^2+2x-4}{x^2-4}.\dfrac{x^2-4}{1}=\dfrac{4x-4}{x^2-4}.\dfrac{x^2-4}{1}=4x-4\)
c)
Để :
\(P=0\Rightarrow4x-4=0\)
\(\Rightarrow4\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vậy.....