Thực hiện phép tính
a) M = 2 x 3 y ( 2 x 2 − 3 y + 5 yz ) ;
b) N = ( − 3 x 3 + 6 xy − 3 x ) − 1 3 xy 3 .
thực hiện phép tính
a.\(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
b.\(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x\ne-y\\3x\ne y\end{matrix}\right.\)
a. \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
\(=\dfrac{x.\left(3x-y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{x.\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{2xy}{9x^2-y^2}\)
\(=\dfrac{x.\left(3x+y+3x-y\right)+2xy}{\left(3x-y\right).\left(3x+y\right)}\)
\(=\dfrac{6x^2+2xy}{\left(3x-y\right).\left(3x+y\right)}\)
\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}\)
\(=\dfrac{2x}{3x-y}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne-5\end{matrix}\right.\)
b. \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
\(=\dfrac{4x+5}{x.\left(x+5\right)}-\dfrac{3x}{x.\left(x+5\right)}\)
\(=\dfrac{x+5}{x.\left(x+5\right)}\)
\(=\dfrac{1}{x}\)
a) Ta có: \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)
\(=\dfrac{x\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}+\dfrac{2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{3x^2-xy+3x^2+xy+2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{6x^2+2xy}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{2x}{3x-y}\)
b) Ta có: \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)
\(=\dfrac{4x+5}{x\left(x+5\right)}-\dfrac{3x}{x\left(x+5\right)}\)
\(=\dfrac{4x+5-3x}{x\left(x+5\right)}\)
\(=\dfrac{x+5}{x\left(x+5\right)}\)
\(=\dfrac{1}{x}\)
Thực hiện phép tính
a) \(\dfrac{3-x}{x-5}+\dfrac{2x-8}{x-5}\)
b) \(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}\)
a,\(\dfrac{3-x}{x-5}+\dfrac{2x-8}{x-5}=\dfrac{3-x+2x-8}{x-5}=\dfrac{x-5}{x-5}=1\)
b, \(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}+\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y+x-y+2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{4x}{\left(x-y\right)\left(x+y\right)}\)
Thực hiện phép tính
a) x. (x + y) + 5y - x2
b) (x - 2). (y + 1) - xy + 4
c) (4x2y + 12xy2 - 8xy) : (2xy)
d) (x - 4)2 - 7 + 8x
Bài 6. Cho x2 + xy = 3
Tính giá trị biểu thức M = x(x2 + y) + x2(y + 1) - 3(x + 1)
Bài 1:
a: \(x\left(x+y\right)+5y-x^2\)
\(=x^2+xy+5y-x^2\)
=xy+5y
b: \(\left(x-2\right)\left(y+1\right)-xy+4\)
\(=xy+x-2y-2-xy+4\)
=-2y+x+2
c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)
\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)
=2x+6y-4
d: \(\left(x-4\right)^2+8x-7\)
\(=x^2-8x+16+8x-7\)
\(=x^2+9\)
Thực hiện phép tính
a) (3xy - x3 + y) . \(\dfrac{2}{3}\) x2yz
b) (x2 - 3x + 9) (x + 2)
c) (12x2y2z2 - 6x2y5z3 - 3x3yz3) : (-xyz)
Bài 1: Thực hiện phép tính
a) (2x+3)2
b) (x-2/5)3
c) (4x2+1)3
d)(-1/3x-y)3
e) (x+4)3
f) (2x-3y)3
Thực hiện phép tính
a) \(^{\dfrac{x^2+2}{x^3-1}}\) +\(\dfrac{2}{x^2+x+1}\) +\(\dfrac{1}{1-x}\)
b) \(\dfrac{1}{x+2}\) +\(\dfrac{3}{x^2-4}\) +\(\dfrac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)
c)\(\dfrac{1}{x-y}\) -\(\dfrac{3xy}{x^3-y^3}\) +\(\dfrac{x-y}{x^2+xy+y^2}\)
d) \(\dfrac{1}{a-b}\) +\(\dfrac{1}{a+b}\) +\(\dfrac{2a}{a^2+b^2}\) +\(\dfrac{4a^3}{a^4+b^4}\)
e) \(\dfrac{1}{a^2-a}\) + \(\dfrac{1}{a^2-3a+2}\) +\(\dfrac{1}{a^2-5a+6}\) +\(\dfrac{1}{a^2-7a+12}\)
a) \(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
b) \(=\dfrac{1}{x+2}+\dfrac{3}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\)
c) \(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{x^2-2xy+y^2+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
Bài 1 làm tính nhân
2x.(x^2-7x-3)
(-2x^3+y^2-7xy).4xy^2
(-5x^3).(2x^2+3x-5)
(2x^2-xy+y^2).(-3x^3)
(x^2-2x+3).(x-4)
(2x^3-3x-1).(5x+2)
Bài 2 Thực hiện phép tính
A,(2x+3y^2)
B, (5x-y)^2
C, (2x+y^2)^3
D, ( 3x^2-2y)^3
\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)
\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)
bài 5: thực hiện phép tính
a) ( x + 3y ) ( x - 2y )
b) ( 2x - y ) ( y - 5x )
c) ( 2x - 5y ) ( y^2 - 2xy )
d) ( x - y ) ( x^2 - xy - y^2 )
\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)
Bài 1: Thực hiện phép tính
a, (5x-2y)(x\(^2\)-xy+1)
b, (x-1)(x+1)(x+2)
c, \(\dfrac{1}{2}\)x\(^2\)y\(^2\)(2x+y)(2x-y)
d, (x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))(4x-1)
e, (x-7)(x+5)-(2x+1)(3-x)
a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y
=5x^3-7x^2y+2xy^2+5x-2y
b: =(x^2-1)(x+2)
=x^3+2x^2-x-2
c: =1/2x^2y^2(4x^2-y^2)
=2x^4y^2-1/2x^2y^4
d: =(x^2-1/4)(4x-1)
=4x^3-x^2-x+1/4
e: =x^2-2x-35+(2x+1)(x-3)
=x^2-2x-35+2x^2-6x+x-3
=3x^2-7x-38
thực hiện phép tính
a)\(\dfrac{3}{5}\)-\(\dfrac{1}{2}\)\(\sqrt{1\dfrac{11}{25}}\)
b)(5+2\(\sqrt{6}\))(5-2\(\sqrt{6}\))
c)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
d)\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)(với x,y>0)
\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)
\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)
\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)
\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)