giải và biện luận pt
3(m+1)x+4=2x+5(m+1)
Giải và biện luận bất phương trình
a) (m-1).x + m +2 > 2x + 4
b) m.(m-2).x < m - (x +1)
b: =>x(m^2-2m)-m+x+1<0
=>x(m^2-2m+1)<m-1
=>x(m-1)^2<m-1
TH1: m=1
BPT sẽ là 0x<0(vô lý)
TH2: m<>1
BPT sẽ có nghiệm là x<1/(m-1)
a: =>x(m-1)-2x>-m-2+4
=>x(m-3)>-m+2
TH1: m=3
BPT sẽ là 0x>-3+2=-1(luôn đúng)
TH2: m<3
BPT sẽ có nghiệm là x<(-m+2)/(m-3)
TH3: m>3
BPT sẽ có nghiệm là x>(-m+2)/(m-3)
(m - 1)x - my = 3m - 1 (1)
2x - y = m+5 (2)
giải và biện luận pt
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Giải và biện luận các phương trình:
a. 3(m + 1)x + 4 = 2x + 5(m + 1)
b. (m + 1)x - x - 2 = 0
c. (m + 1)2x + 1 - m = (7m - 5)x
d.\(m-5+\dfrac{2m+5}{x-2}=0\)
e.\(\dfrac{x}{x-m}-\dfrac{2m}{x+m}=\dfrac{8m^2}{x^2-m^2}\)
Tối nay mình nộp đề rồi nhờ các bạn giúp mình với ạ!
b, pt \(\Leftrightarrow\)mx - 2=0
Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)
Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)
Giải và biện luận bất phương trình sau m(2-x)+(m-1)^2 >2x+5
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)
giải và biện luận HPT theo tham số m
\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2}{m-1}\ne\dfrac{-1}{-m}\)
=>\(\dfrac{2}{m-1}-\dfrac{1}{m}\ne0\)
=>\(\dfrac{2m-m+1}{m\left(m-1\right)}\ne0\)
=>\(\dfrac{m+1}{m\left(m-1\right)}\ne0\)
=>\(m\notin\left\{0;1;-1\right\}\)
Để hệ có phương trình có vô số nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}=\dfrac{m+5}{3m-1}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{1}{m}\\\dfrac{2}{m-1}=\dfrac{m+5}{3m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=m-1\\2\left(3m-1\right)=\left(m+5\right)\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2+4m-5=6m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3=0\end{matrix}\right.\Leftrightarrow m=-1\)
Để hệ phương trình vô nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}\ne\dfrac{m+5}{3m-1}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{-1}{-m}\\\dfrac{2}{m-1}\ne\dfrac{m+5}{3m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2m=-m+1\\2\left(3m-1\right)\ne\left(m-1\right)\left(m+5\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=1\\m^2+4m-5\ne6m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3\ne0\end{matrix}\right.\)
=>\(m\in\varnothing\)
Giải và biện luận các phương trình sau
a)
{mx+(m-1)y=m+1
{2x+my=2
b) {mx+(m-2)y=5
{(m+2)x+(m+1)y=2
c){(m-1)x+2y=3m-1
{(m+2)x-y=1-m
a
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)
=>m^2<>2m-2
=>m^2-2m+2<>0(luôn đúng)
Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)
=>2m=2m+2 và 2m-2=m^2+m
=>m^2+m-2m+2=0 và 0m=2(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)
=>m^2=2m-2 và 2m<>2m+2
=>0m<>2 và m^2-2m+2=0(loại)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)
=>m^2+m<>m^2-4
=>m<>-4
Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)
=>m^2+m=m^2-4 và 2m=5m+10
=>m=-4 và m=-10/3(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)
=>m=-4 và m<>-10/3(nhận)
c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)
=>-2m-4<>m-1
=>-3m<>3
=>m<>-1
Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>2m+4=-m+1 và 2-2m<>-3m+1
=>3m=-3 và m<>-1
=>m=-1 và m<>-1(loại)
Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>m=-1
giải và biện luận các phương trình sau: a) (2x+m-4)(2mx-x+m) =0 ; b) (m+1)x +m-2/x+3 =m
=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0
<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)
(1)
Xét m = 0 thì pt có nghiệm duy nhất là x = 2
Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2
(2)
Xét m = 1/2 thì pt vô nghiệm.
Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)
Câu b thì bn viết ko rõ đề lắm nên k giải.
Giải và biện luận các phương trình sau a) {mx+(m+1)y=m+1
{2x+my=2
b) {mx+(m-2)y=5
{(m+2)x+(m+1)y=2
c){(m-1)x+2y=3m-1
{(m+2)x-y=1-m
a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)
Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0
=>y=1 và x=1
Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
Nếu m^2-2m-2=0 thì hệ vô nghiệm
Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)
c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m
=>(3m+1)x=m+1 và y=(m+2)x+m-1
Nếu m=-1/3 thì hệ vô nghiệm
Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)