Cho tam giác ABC có AB = AC và I là trung điểm của BC. Khi đó:
A. Δ A I B = Δ A I C
B. A I B ^ = A I C ^
C. AI là tia phân giác của B A C ^
D. Cả A, B, C đều đúng
Cho Δ ABC vuông tại A có góc B=300. Tia phân giác góc C cắt AB tại D. Kẻ DH vuông góc với BC (H ϵ BC).
a) C/m Δ BCD là tam giác cân và Δ ACH là tam giác đều.
b) Khi AB = 5cm. Tính BC, AC
c) Gọi I là giao điểm của HD và AC. C/m Δ IBC là tam giác đều và IC // với AH
Help mik các bạn ơi, please!
Cho tam giác ABC ( AB< AC ). Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh : a) Δ AIB = Δ CID. b) AD = BC và AD // BC. c) Gọi E là trung điểm của AB. Trên tia đối của tia EC lấy điểm K sao cho: EC = EK. Chứng minh: D, A, K thẳng hàng.
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
Các bạn ơi, giúp mik bài này với!
Cho Δ ABC vuông tại A có góc B = 300. Tia phân giác góc C cắt AB tại D. Kẻ DH vuông với BC (HϵBC)
a) C/m Δ BCD là tam giác cân và Δ ACH là tam giác đều
b) Khi AB = 5cm. Tính độ dài BC, AC
c) Gọi I là giao điểm của HD và AC. C/m Δ IBC là tam giác đều và IC // với AH
(Các bạn vẽ luôn hộ mik hình nha, ko vẽ cũng đc)
Thanks các bạn nhiều!
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-30^0=60^0\)
Ta có: CD là tia phân giác của \(\widehat{ACB}\)(gt)
nên \(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)
mà \(\widehat{DBC}=30^0\)(gt)
nên \(\widehat{DBC}=\widehat{DCB}\)
Xét ΔBCD có \(\widehat{DBC}=\widehat{DCB}\)(cmt)
nên ΔBCD cân tại D(Định lí đảo của tam giác cân)
Xét ΔACD vuông tại A và ΔHCD vuông tại H có
CD chung
\(\widehat{ACD}=\widehat{HCD}\)(CD là tia phân giác của \(\widehat{ACH}\))
Do đó: ΔACD=ΔHCD(Cạnh huyền-góc nhọn)
Suy ra: CA=CH(hai cạnh tương ứng)
Xét ΔCAH có CA=CH(cmt)
nên ΔCAH cân tại C(Định nghĩa tam giác cân)
Xét ΔCHA cân tại C có \(\widehat{ACH}=60^0\)(cmt)
nên ΔCHA đều(Dấu hiệu nhận biết tam giác đều)
b) Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan\widehat{B}\)
\(\Leftrightarrow AC=5\cdot\tan30^0\)
hay \(AC=\dfrac{5\sqrt{3}}{3}cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+\left(\dfrac{5\sqrt{3}}{3}\right)^2=\dfrac{100}{3}\)
hay \(BC=\dfrac{10\sqrt{3}}{3}cm\)
Vậy: \(AC=\dfrac{5\sqrt{3}}{3}cm\); \(BC=\dfrac{10\sqrt{3}}{3}cm\)
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm.
a) Chứng minh Δ ABC vuông
b) Trên BC lấy điểm D sao cho BA = BD. Từ D vẽ Dx ⊥ BC, Dx cắt AC tại H
Chứng minh Δ HBA = Δ HBD, suy ra BH là tia phân giác của ABC
c) Tia Dx cắt AB tại I. Chứng minh IH + IB > HD + BH
d) Gọi M là trung điểm IC. Chứng minh ba điểm B, H, M thẳng hàng
a, ta có
BC^2=5^2=25
AB^2+AC^2=3^2+4^2=9+16=25
=>AB^2+AC^2=BC^2
=> tam giác ABC vuông tại A
b.
Dx vuông góc với BC
=> góc BDH=90 độ
xét tam giác HBA và tam giác HBD có
BA=BD(gt)
HB cạnh chung
góc HAB=góc HDB= 90 độ
=> tam giác HBA= tam giác HBD(cạnh huyền- cạnh góc vuông)
=> góc HBA=góc HBD(hai góc tương ứng)
=> BH là phân giác góc ABD
Cho ABC cân ở A. Có góc A nhọn Gọi I là trung điểm của BC . Kẻ BD vuông góc với AC tại D , kẻ CE vuông góc với AB tại E . Gọi K là giao điểm của BD và CE .
Chứng minh rằng: a) Δ BCE= ΔCBD
b) Δ BEK= ΔCDK và AK là tia phân giác của góc BAC
c) Ba điểm A,K,I thẳng hàng
Cho ΔABC có các đường cao BD,CE. Gọi I là trung điểm BC.
a, CMR ΔEID là tam giác cân.
b, Gọi H , C ,I trên đường thẳng ED. CMR I là trung điểm của ED từ đó suy ra HE=DK
Bài 3. (3,0 điểm) Cho tam giác ABC, lấy M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh AMB = DMC;
b) Chứng minh AC // BD;
c) Kẻ AH ⊥ BC, DK ⊥ BC (H, K thuộc BC). Chứng minh BK = CH;
d) Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. Chứng minh C là trung điểm của DE.
ChoΔABC có các đường cao BD,CE. Gọi I là trung điểm BC.
a, CMR Δ EID là tam giác cân.
b, Gọi H,K,I lần lượt là hình chiếu vuông góc của B,C,I trên đường thẳng ED. CMR I là trung điểm của ED. Từ đó suy ra HE=DK
Cho Δ ABC vuông tại B, BC = 15 cm, BA = 8 cm. Trên cạnh BC lấy E sao cho BE = BA
a) Tính AC
b) Δ ABE là tam giác gì? Vì sao
c) Từ B kẻ đường thẳng vuông với AE tại H và cắt AC tại D. Chứng minh BD là tia phân giác của góc ABC
d) Gọi I là giao điểm của đường thẳng AD và DE. Chứng minh A song song IC
Cho Δ ABC cân có góc A = 120°. Vẽ tia phân giác AI ( I ∈ BC ). Từ I vẽ IH vuông góc AB tại H, IK vuông góc AC tại K, trên đoạn HB lấy N sao cho HM = KN
a) Chứng minh Δ IMN cân
b) Chứng minh HK song song MN
c) Từ C vẽ đường thẳng d ⊥ BC cắt tia BA tại E. Biết CE = 8 cm. Tính CK và HK
THANKS MN
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
1 ) Cho Δ ADE cân tại A . Trên cạnh DE lấy các điểm B và C sao cho DB = EC , nhỏ hơn 1/2 DE .
a ) Δ ABC là tam giác gì ?
b ) Vẽ BM ⊥ AD , CN ⊥ AE . Chứng minh : CM = CN
c ) Gọi I là giao điểm của MB và NC . Δ IBC là tam giác gì ?
d ) Chứng minh : AI là tia phân giác của góc BAC
2 ) Cho Δ ABC cân tại A . Vẽ BH ⊥ AC . Gọi D là 1 điểm thuộc cạnh đáy BC . Vẽ DE ⊥ AC , DF ⊥ AB . Chứng minh : DE + DF = BH