Những câu hỏi liên quan
NH
Xem chi tiết
MP
27 tháng 6 2019 lúc 10:44

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

Bình luận (0)
MP
27 tháng 6 2019 lúc 10:47

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

Bình luận (0)
MP
27 tháng 6 2019 lúc 10:52

\(\text{c, }2^{24}=\left(2^3\right)^8=8^8\)

     \(3^{16}=\left(3^2\right)^8=9^8\)

\(\text{Vậy ...}\)

Bình luận (0)
LL
Xem chi tiết
NO
Xem chi tiết
NO
25 tháng 9 2018 lúc 15:42

Xin lỗ nhé thừa số 4 bé ở câu a

Bình luận (0)
DB
25 tháng 9 2018 lúc 15:50

\(a,\sqrt{2}+\sqrt{11}< \sqrt{3}+\sqrt{16}=\sqrt{3}+4\)

Bình luận (0)
LG
Xem chi tiết
LT
5 tháng 9 2019 lúc 13:28

\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)

\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)

Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)

Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)

Bình luận (0)
NH
Xem chi tiết
KN
28 tháng 6 2019 lúc 5:54

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

Bình luận (0)
KN
28 tháng 6 2019 lúc 6:00

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

Bình luận (0)
KN
28 tháng 6 2019 lúc 6:50

b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)

\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)

Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)

hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)

Bình luận (0)
TD
Xem chi tiết
NT
26 tháng 9 2017 lúc 23:13

103và 2100

Ta có:1030=(103)10=100010

          2100=(210)10=102410

Vì 1000<1024 nên 1030<2100

5300 và 3453

Ta có:5300=(52)150=25150

            3453=(33)151=27151=27.27150

Vì  25 < 27.27 nên 5300<3453

nhớ k ch mình nhé

Bình luận (0)
NP
Xem chi tiết
CH
23 tháng 6 2017 lúc 9:29

1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)

\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)

\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)

\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)

2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)

\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)

Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)

Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

Bình luận (0)
HM
Xem chi tiết
CN
6 tháng 8 2017 lúc 17:54

1.

a) 5/8 x 4/10 + 2/3 =

= 1/4+ 2/3 = 11/12

b)5/12 x 4/7+5/12 x3/7

=5/12 x (4/7 +3/7)

=5/12 x1 = 5/12

c)(4/5 + 3/10 - 1/5 ) x 6 : 4/7

= ( 8/10 + 3/10 + 2/10) x 6 x 7/4

=13/10 x 21/2

=273/20

2.

5/8 và 3/2

ta có 5/8 =10/16    ;        3/2 =24 /16 

vì 24 /16 >10 /16 nên 3/2 > 5/8

b. tương tự như câu a nha

c 418/417 và 925 /926

418/417 > 1     ; 925 /926 < 1

vì 418 /417 >1 mà 925/926 < 1 nên 418 / 417 > 925 /926

chúc bạn học tốt nha !

Bình luận (0)
CN
7 tháng 8 2017 lúc 9:56

mình làm sai chỗ nào à

Bình luận (0)
NL
Xem chi tiết
YN
24 tháng 2 2020 lúc 9:12

a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)

Mà \(64< 81\)

\(\Rightarrow64^4< 81^4\)

\(\Rightarrow2^{24}< 3^{16}\)

b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 8 < 9  

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta có 71 < 2401 

\(\Rightarrow71^5< 2401^5\)

\(\Rightarrow71^5< 7^{20}\)

!! K chắc câu c

@@ Học tốt

Chiyuki Fujito

Bình luận (0)
 Khách vãng lai đã xóa
TL
24 tháng 2 2020 lúc 9:19

a) \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c) \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
LV
22 tháng 4 2017 lúc 20:56

a) 5 và 3√123:

Ta có 5 = 3√125; vì 125 > 123 ⇒ 3√125 > 3√123.Vậy 5 > 3√123

b) Ta có:

53\(\sqrt{ }\)6 = 3\(\sqrt{ }\)53.6 = 3\(\sqrt{ }\)125.6 = 3\(\sqrt{ }\)750

63\(\sqrt{ }\)5 = 3\(\sqrt{ }\)63.5 = 3\(\sqrt{ }\)216.5 = 3\(\sqrt{ }\)1080

Vì 750 < 1080 \(\Rightarrow\)3\(\sqrt{ }\)750 < 3\(\sqrt{ }\)1080 . Vậy 53\(\sqrt{ }\)6 < 63\(\sqrt{ }\)5.

Bình luận (0)
DQ
16 tháng 8 2018 lúc 22:18

a) \(\sqrt[3]{123}\)\(5\)

Ta có : \(5^3=125\)

\(\left(\sqrt[3]{123}\right)^3=123\)

\(125>123\)

\(\implies\) \(\sqrt[3]{125}>\sqrt[3]{123}\)

\(\iff\) \(5>\sqrt[3]{123}\)

Vậy \(5>\sqrt[3]{123}\)

b) \(5\sqrt[3]{6}\)\(6\sqrt[3]{5}\)

Ta có : \(\left(5\sqrt[3]{6}\right)^3=5^3.\left(\sqrt[3]{6}\right)^3=125.6=750\)

\(\left(6\sqrt[3]{5}\right)=6^3.\left(\sqrt[3]{5}\right)^3=216.5=1080\)

\(750< 1080\)

\(\implies\)\(\sqrt[3]{750}< \sqrt[3]{1080}\)

\(\iff\) \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)

Vậy \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)

Bình luận (0)